Lecture 1, 1/18/22

Material corresponds to Ross $\S1$ and $\S3$. I also reccomend $\S2$ and the Appendix on Set Notation.

Numbers

SetsAxioms
$$\mathbb{N} = \{1, 2, 3, ...\}$$
Peano Axioms \cap $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ $\mathbb{Q} = \{p/q \mid p, q \in \mathbb{Z}, q \neq 0\}$ Ordered Field Axioms \cap $\mathbb{R} = ...$ $\mathbb{R} = ...$ Ordered Field Axioms, Completeness Axiom

Axioms for \mathbb{N} (Peano Axioms) (Ross p.1)

- 1. $1 \in \mathbb{N}$
- 2. If $n \in \mathbb{N}$ then $n + 1 \in \mathbb{N}$
- 3. If $n \in \mathbb{N}$ then $n + 1 \neq 1$
- 4. If n + 1 = m + 1 then n = m
- 5. (Induction Axiom) Let $S \subseteq \mathbb{N}$ be a set with the following properties:
 - $1 \in S$
 - If $n \in S$ then $n + 1 \in S$

Then $S = \mathbb{N}$.

Ordered Field Axioms (Ross p.13)

The following hold with \mathbb{Q} replaced by \mathbb{R} as well:

Let $a, b \in \mathbb{Q}$. Then $a + b \in \mathbb{Q}$ and $ab \in \mathbb{Q}$.

- Addition is Commutative, Associative, has 0, and has additive inverses: a + b = b + a, (a + b) + c = a + (b + c), a + 0 = a and a + (-a) = 0.
- Multiplication is commutative, associative, distributive, has 1, and has multiplicative inverses (except 0):

ab = ba, (ab)c = a(bc), a(b + c) = ab + ac, $a \cdot 1 = a$ and if $a \neq 0$, and $a(a)^{-1} = 1$.

For all $a, b, c \in \mathbb{Q}$

- Either $a \leq b, b \leq a$, or both.
- If $a \leq b$ and $b \leq a$ then a = b.
- If $a \leq b$ and $b \leq c$ then $a \leq c$.
- If $a \le b$ then $a + c \le b + c$
- If $a \leq b$ and $0 \leq c$ then $ac \leq bc$.

Facts following from Ordered Field Axioms (Ross p.15)

Theorem 1 Let $a, b, c \in \mathbb{R}$

- 1. If a + c = b + c then a = b2. a0 = 03. (-a)b = -(ab)4. (-a)(-b) = ab5. If ac = bc and $c \neq 0$ then a = b
- 6. If ab = 0 then a = 0 or b = 0.

Theorem 2 Let $a, b, c \in \mathbb{R}$.

1. If $a \le b$ then $-b \le -a$ 2. If $a \le b$ and $c \le 0$ then $bc \le ac$ 3. If $0 \le a$ and $0 \le b$ then $0 \le ab$ 4. $0 \le a^2$ 5. 0 < 16. If 0 < a then $0 \le a^{-1}$ 7. If 0 < a < b then $0 < b^{-1} < a^{-1}$.