Homework 8

Due Tuesday, April 12 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. Ross 29.2
- $2. \ \mathrm{Ross} \ 29.5$
- $3. \ {\rm Ross} \ 29.13$
- 4. Ross 29.17
- $5. \ \mathrm{Ross} \ 30.1$
- 6. Ross 30.2. You may assume that log is continuous.
- 7. a) Let (s_n) be a sequence such that $s_n \neq 0$ for all $n \in \mathbb{N}$. Prove that $|s_n| \to \infty$ if and only if $\frac{1}{|s_n|} \to 0$.
 - b) Let $f: E \to \mathbb{R}$ be a function such that $f(x) \neq 0$ for all $x \in E$. Let a be the limit of a sequence in E. Prove that $\lim_{x\to a} |f(x)| = \infty$ if and only if that $\lim_{x\to a} \frac{1}{f(x)} = 0$.
 - c) Let a > 0, $f : (a, \infty) \to \mathbb{R}$ a function, and $g : (0, \frac{1}{a}) \to \mathbb{R}$ the function defined by $g(x) = f(\frac{1}{x})$. Prove that $\lim_{x\to\infty} f(x) = L$ if and only if $\lim_{x\to 0} g(x) = L$.
- 8. a) Let $E \subseteq \mathbb{R}$ and let *a* be the limit of a sequence in *E*. Let $f, g: E \to \mathbb{R}$ be functions such that $f(x) \leq g(x)$ for all $x \in E$, $\lim_{x \to a} f(x) = F$ and $\lim_{x \to a} g(x) = G$. Prove that $F \leq G$.
 - b) The fact in part a becomes false if we replace \leq with \langle . Find f, g demonstrating this.