Homework 6

Due Tuesday, March 8 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. Use the $\epsilon \delta$ property to show that the following functions $f : \mathbb{R} \to \mathbb{R}$ are continuous (i.e. for each $x_0 \in \mathbb{R}$, given $\epsilon > 0$, find $\delta > 0$ such that $|x x_0| < \delta$ implies $|f(x) f(x_0)| < \epsilon$):
 - a) $f(x) = x^2$
 - b) $f(x) = x^3$. (Hint: $x^3 y^3 = (x y)(x^2 + xy + y^2)$)
- 2. Prove that $f:[0,\infty)\to\mathbb{R}, f(x)=\sqrt{x}$, is continuous.
- 3. In each part, prove that $f: \mathbb{R} \to \mathbb{R}$ is is not continuous at $x_0 = 0$.
 - a) f(x) = 1 for x > 0 and f(x) = 0 for $x \le 0$.
 - b) $f(x) = \sin(1/x)$ for $x \neq 0$ and f(0) = 0.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Suppose $f(x_0) > 0$ for some $x_0 \in \mathbb{R}$. Prove that there is an open interval $(a,b) \subseteq \mathbb{R}$ such that $x_0 \in (a,b)$ and f(x) > 0 for all $x \in (a,b)$.
- 5. Ross 17.12 Hint: use the density of the rationals \mathbb{Q}
- 6. Ross 17.13 Hint: also use the density of the irrationals $\mathbb{R}\backslash\mathbb{Q}$
- 7. Let $E \subset \mathbb{R}$ be a set which is not closed. Show that there exists $f: E \to \mathbb{R}$ such that f is continuous and f is not bounded. (Hint: The function should have the form 1/(x-c). What should c be?)
- 8. Let $a_0, a_1, a_2, a_3 \in \mathbb{R}$ with $a_3 > 0$. Consider the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$. Prove that there exists $x_0 \in \mathbb{R}$ such that $f(x_0) = 0$.