Homework 5

Due Tuesday, March 1 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. a) Give a definition of an open subset of \mathbb{R} .
 - b) Give a definition of a closed subset of \mathbb{R} (make sure a and b do not give circular definitions).
 - c) Given an example of a subset of \mathbb{R} which is open and not closed.
 - d) Given an example of a subset of \mathbb{R} which is closed and not open.
 - e) Given an example of a subset of \mathbb{R} which is neither closed nor open.
 - f) Give and example of a subset of \mathbb{R} which is both open and and closed.
- 2. Let S be a metric space with distance function d. Let (s_n) be a sequence in S which converges to $s \in S$. Prove that (s_n) is bounded.
- 3. Let S be a metric space with distance function d. Let E be a sequentially compact subset of S and let F be a closed subset of S such that $F \subseteq E$. Prove that F is sequentially compact.
- 4. Consider the series $\sum \frac{k^2}{3^k}$.
 - a) Use the ratio test to show the series converges.
 - b) Use the root test to show the series converges. (Recall that $\lim n^{1/n} = 1$)
 - c) Use the limit comparison test to show the series converges (Hint: Compare to a geometric series. You might need to consider only large k.)
- $5. \ \mathrm{Ross} \ 14.2$
- 6. Prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge. See Ross 14.14; the method there can be rephrased as:

Compare
$$\sum_{n=2^{k-1}}^{2^k-1} \frac{1}{n}$$
 to $\sum_{n=2^{k-1}}^{2^k-1} \frac{1}{2^k}$

- 7. Ross 15.1 and 15.2.
- 8. a) Prove that $\mathbb{R}^2 = \{(x, y) | x, y \in \mathbb{R}\}$ is a metric space with the alternate distance function $d'((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}.$

(Hint: for the triangle inequality, first proove that

$$d'((x_1, y_1), (x_2, y_2)) \le d'((x_1, y_1), (0, 0)) + d'((x_2, y_2), (0, 0)).$$

Then prove

$$d'((x_1, y_1), (x_2, y_2)) = d'((x_1 - a, y_1 - b), (x_2 - a, y_2 - b))$$

for any $a, b \in \mathbb{R}$.) (Continued on page 2) b) Let $\epsilon > 0$. Draw a picture of the set $B_{\epsilon}((0,0)) = \{(x,y) \in \mathbb{R}^2 | d'((x,y),(0,0)) < \epsilon\}$, and the set $\{(x,y) \in \mathbb{R}^2 | d((x,y),(0,0)) < \epsilon\}$, where d is the usual distance function

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

c) If you are interested, no need to hand in: Prove the triangle inequality for the usual distance function d on \mathbb{R}^2 as given above.