Homework 5

Due Tuesday, March 1 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

1. a) Give a definition of an open subset of \mathbb{R}.
b) Give a definition of a closed subset of \mathbb{R} (make sure a and b do not give circular definitions).
c) Given an example of a subset of \mathbb{R} which is open and not closed.
d) Given an example of a subset of \mathbb{R} which is closed and not open.
e) Given an example of a subset of \mathbb{R} which is neither closed nor open.
f) Give and example of a subset of \mathbb{R} which is both open and and closed.
2. Let S be a metric space with distance function d. Let $\left(s_{n}\right)$ be a sequence in S which converges to $s \in S$. Prove that $\left(s_{n}\right)$ is bounded.
3. Let S be a metric space with distance function d. Let E be a sequentially compact subset of S and let F be a closed subset of S such that $F \subseteq E$. Prove that F is sequentially compact.
4. Consider the series $\sum \frac{k^{2}}{3^{k}}$.
a) Use the ratio test to show the series converges.
b) Use the root test to show the series converges. (Recall that $\lim n^{1 / n}=1$)
c) Use the limit comparison test to show the series converges (Hint: Compare to a geometric series. You might need to consider only large k.)
5. Ross 14.2
6. Prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge. See Ross 14.14; the method there can be rephrased as:

$$
\text { Compare } \sum_{n=2^{k-1}}^{2^{k}-1} \frac{1}{n} \text { to } \sum_{n=2^{k-1}}^{2^{k}-1} \frac{1}{2^{k}}
$$

7. Ross 15.1 and 15.2.
8. a) Prove that $\mathbb{R}^{2}=\{(x, y) \mid x, y \in \mathbb{R}\}$ is a metric space with the alternate distance function

$$
d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}
$$

(Hint: for the triangle inequality, first proove that

$$
d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \leq d^{\prime}\left(\left(x_{1}, y_{1}\right),(0,0)\right)+d^{\prime}\left(\left(x_{2}, y_{2}\right),(0,0)\right) .
$$

Then prove

$$
d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d^{\prime}\left(\left(x_{1}-a, y_{1}-b\right),\left(x_{2}-a, y_{2}-b\right)\right)
$$

for any $a, b \in \mathbb{R}$.)
(Continued on page 2)
b) Let $\epsilon>0$. Draw a picture of the set $B_{\epsilon}((0,0))=\left\{(x, y) \in \mathbb{R}^{2} \mid d^{\prime}((x, y),(0,0))<\epsilon\right\}$, and the set $\left\{(x, y) \in \mathbb{R}^{2} \mid d((x, y),(0,0))<\epsilon\right\}$, where d is the usual distance function

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

c) If you are interested, no need to hand in: Prove the triangle inequality for the usual distance function d on \mathbb{R}^{2} as given above.

