Homework 4

Due Tuesday, February 22 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. a) Give the definition of \limsup and \liminf
 - b) Give an example of a sequence (s_n) such that the set of values $\{s_n|n\in\mathbb{N}\}$ is infinite, $\limsup s_n=2$, and $\liminf s_n=1$.
 - c) Given an example of a sequence (s_n) such that $\sup\{s_n|n\in\mathbb{N}\}>\limsup s_n$
- 2. For each sequence, find a monotone subsequence converging to the liminf or show that none exists.
 - a) $((-1)^n)$
 - b) $\left(\frac{1}{n}\right)$
 - c) (n^2)
 - d) $((-1)^n + \frac{1}{n})$
 - e) $n\cos\left(\frac{n\pi}{4}\right)$
- 3. Prove that
 - a) $(1, \infty)$ is open and not closed.
 - b) $[1, \infty)$ is closed and not open.
 - c) [0,1) is neither open nor closed
 - d) $\{0\} \cup \{1, 1/2, 1/3, ..., 1/n, ...\}$ is closed and not open.
 - e) Q is neither open nor closed.
- 4. Let $E \subset \mathbb{R}$ be an open set. Let (s_n) be a sequence which converges to $s \in E$. Prove that there exists $N \in \mathbb{R}$ such that n > N implies $s_n \in E$.
- 5. Let $E \subset \mathbb{R}$ be nonempty and sequentially compact. Prove that $\sup E$, $\inf E$ exist, and that $\sup E \in E$ and $\inf E \in E$.
- 6. For each $n \in \mathbb{N}$, let U_n be an open set and let V_n be a closed set.
 - a) Prove that the union of all the U_n is open.
 - b) Prove the the intersection of all the V_n is closed.
 - c) Prove that for any $n \in \mathbb{N}$, $U_1 \cap U_2 \dots \cap U_n$ is open.
 - d) Give an example of collection of open sets U_n such that the intersection of all the U_n is not open.
 - e) Give an example of collection of closed sets V_n such that the union of all the V_n is not closed.

(problem 7 on page 2)

7. Let $a_n \in \mathbb{R}$, $a_n > 0$ for all $n \in \mathbb{N}$. Consider the sequence $\left(\frac{a_{n+1}}{a_n}\right)$. Let $C \in \mathbb{R}$ such that

$$\limsup \frac{a_{n+1}}{a_n} < C.$$

Prove that there exists $N \in \mathbb{N}$ such that for n > N,

$$a_n < C^{n-N} a_N.$$