Homework 4

Due Tuesday, February 22 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

1. a) Give the definition of lim sup and liminf
b) Give an example of a sequence $\left(s_{n}\right)$ such that the set of values $\left\{s_{n} \mid n \in \mathbb{N}\right\}$ is infinite, $\limsup s_{n}=2$, and $\liminf s_{n}=1$.
c) Given an example of a sequence $\left(s_{n}\right)$ such that $\sup \left\{s_{n} \mid n \in \mathbb{N}\right\}>\lim \sup s_{n}$
2. For each sequence, find a monotone subsequence converging to the liminf or show that none exists.
a) $\left((-1)^{n}\right)$
b) $\left(\frac{1}{n}\right)$
c) $\left(n^{2}\right)$
d) $\left((-1)^{n}+\frac{1}{n}\right)$
e) $n \cos \left(\frac{n \pi}{4}\right)$
3. Prove that
a) $(1, \infty)$ is open and not closed.
b) $[1, \infty)$ is closed and not open.
c) $[0,1)$ is neither open nor closed
d) $\{0\} \cup\{1,1 / 2,1 / 3, \ldots, 1 / n, \ldots\}$ is closed and not open.
e) \mathbb{Q} is neither open nor closed.
4. Let $E \subset \mathbb{R}$ be an open set. Let $\left(s_{n}\right)$ be a sequence which converges to $s \in E$. Prove that there exists $N \in \mathbb{R}$ such that $n>N$ implies $s_{n} \in E$.
5. Let $E \subset \mathbb{R}$ be nonempty and sequentially compact. Prove that $\sup E, \inf E$ exist, and that $\sup E \in E$ and $\inf E \in E$.
6. For each $n \in \mathbb{N}$, let U_{n} be an open set and let V_{n} be a closed set.
a) Prove that the union of all the U_{n} is open.
b) Prove the the intersection of all the V_{n} is closed.
c) Prove that for any $n \in \mathbb{N}, U_{1} \cap U_{2} \ldots \cap U_{n}$ is open.
d) Give an example of collection of open sets U_{n} such that the intersection of all the U_{n} is not open.
e) Give an example of collection of closed sets V_{n} such that the union of all the V_{n} is not closed.
(problem 7 on page 2)
7. Let $a_{n} \in \mathbb{R}, a_{n}>0$ for all $n \in \mathbb{N}$. Consider the sequence $\left(\frac{a_{n+1}}{a_{n}}\right)$. Let $C \in \mathbb{R}$ such that

$$
\limsup \frac{a_{n+1}}{a_{n}}<C
$$

Prove that there exists $N \in \mathbb{N}$ such that for $n>N$,

$$
a_{n}<C^{n-N} a_{N}
$$

