Homework 2

Due Tuesday, February 8 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. What is the definition of the supremum of a set? What is the definition of the infimum of a set? Give an example of
 - a) A set $S \subseteq \mathbb{R}$ such that $\sup S \in S$
 - b) A set $S \subseteq \mathbb{R}$ such that $\sup S \in \mathbb{R} \setminus S$
 - c) A set $S \subseteq \mathbb{R}$ which does not have a supremum.
- 2. a) Find $N_1 \in \mathbb{R}$ such that if $n > N_1$, then $n + 6 \le 7n$
 - b) Find $N_2 \in \mathbb{R}$ such that if $n > N_2$, then $n^2 6 \ge \frac{n^2}{2}$
 - c) Find $N_3 \in \mathbb{R}$ such that if $n > N_3$, $\left| \frac{n+6}{n^2-6} \right| < \frac{14}{n}$.
 - d) Let $\epsilon > 0$. Find $N_4 \in \mathbb{R}$ such that if $n > N_4$, $14/n < \epsilon$.
 - e) Use parta a-d to prove, directly from the definition of convergence of a sequence, that

$$\frac{n+6}{n^2-6} \to 0.$$

- 3. Ross 8.1 and 8.2. Prove that the sequence converges to that limit directly from the definition; do not use any limit theorems.
- 4. Ross 8.8
- 5. Prove that each of the following sequences does not converge to any $s \in \mathbb{R}$.
 - a) (n)b) $\left(\cos\left(\frac{n\pi}{3}\right)\right)$ c) $\left(\sin\left(\frac{n\pi}{3}\right)\right)$ d) $\left(1 + (-1)^n\right)$
- 6. a) Ross 8.5, part a.
 - b) Ross 8.6, part a.
- 7. a) Ross 8.10
 - b) Let $a, b \in \mathbb{R}$ and let (s_n) be a sequence such that $a \leq s_n \leq b$ for all $n \in \mathbb{N}$. Prove that if $s_n \to s$ then $a \leq s \leq b$.

8. Let $r \in \mathbb{R}$. Prove that there exists a sequence (s_n) such that $s_n \in \mathbb{Q}$ for all $n \in \mathbb{N}$ and $s_n \to r$.

Please do Ross 7.3 as well, but you do not need to hand it in.