Homework 12

Due Thursday, May 5 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. Define $g_k:(0,1)\to\mathbb{R}$ by $g_k(x)=x^k$. Prove that $\sum_{k=0}^{\infty}g_k$ converges pointwise to $f(x)=\frac{1}{1-x}$ (that is, the sequence of partial sums converges pointwise). Prove that $\sum_{k=0}^{\infty}g_k$ does not converge uniformly.
- 2. Ross 25.3
- 3. Ross 23.1 a), c), e), g).
- 4. For each $n \in \mathbb{N}$, define $f_n: (-1,1) \to \mathbb{R}$ by $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$.
 - a) Prove that (f_n) converges uniformly to f(x) = |x|.
 - b) Prove that f_n is differentiable and find f'_n .
 - c) Find the function $g:(-1,1)\to\mathbb{R}$ such that (f'_n) converges pointwise to g. Prove that (f'_n) does not converge uniformly to g.
- 5. Prove that $\sum_{n=1}^{\infty} nx^n$ converges to $\frac{x}{(1-x)^2}$ for $x \in (-1,1)$. Hint: (Use the fact that $\sum_{n=0}^{\infty} x^n$ converges to $\frac{1}{1-x}$).
- 6. Use the fact that for each $x \in \mathbb{R}$, $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ to prove that $(e^x)' = e^x$.
- 7. Define $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-x^2}$. Find a power series which converges at each $x \in \mathbb{R}$ to $\int_0^x f(x) dx$
- 8. Prove that there does not exist a power series which converges pointwise to $f:(-1,1)\to\mathbb{R},$ f(x)=|x|