Homework 12

Due Thursday, May 5 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

1. Define $g_{k}:(0,1) \rightarrow \mathbb{R}$ by $g_{k}(x)=x^{k}$. Prove that $\sum_{k=0}^{\infty} g_{k}$ converges pointwise to $f(x)=\frac{1}{1-x}$ (that is, the sequence of partial sums converges pointwise). Prove that $\sum_{k=0}^{\infty} g_{k}$ does not converge uniformly.
2. Ross 25.3
3. Ross 23.1 a), c), e), g).
4. For each $n \in \mathbb{N}$, define $f_{n}:(-1,1) \rightarrow \mathbb{R}$ by $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n}}$.
a) Prove that $\left(f_{n}\right)$ converges uniformly to $f(x)=|x|$.
b) Prove that f_{n} is differentiable and find f_{n}^{\prime}.
c) Find the function $g:(-1,1) \rightarrow \mathbb{R}$ such that $\left(f_{n}^{\prime}\right)$ converges pointwise to g. Prove that $\left(f_{n}^{\prime}\right)$ does not converge uniformly to g.
5. Prove that $\sum_{n=1}^{\infty} n x^{n}$ converges to $\frac{x}{(1-x)^{2}}$ for $x \in(-1,1)$. Hint: (Use the fact that $\sum_{n=0}^{\infty} x^{n}$ converges to $\left.\frac{1}{1-x}\right)$.
6. Use the fact that for each $x \in \mathbb{R}, e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ to prove that $\left(e^{x}\right)^{\prime}=e^{x}$.
7. Define $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{-x^{2}}$. Find a power series which converges at each $x \in \mathbb{R}$ to $\int_{0}^{x} f$.
8. Prove that there does not exists a power series which converges pointwise to $f:(-1,1) \rightarrow \mathbb{R}$, $f(x)=|x|$
