

3) Define h: (a, h3 - 3)R, h(x) = f(x) - g(x). Then h is continuous, $h(a) = f(x) - g(a) \ge 0$ and $h(b) = f(b) - g(b) \le 0$. Thus O is between h(a) and h(b), and by the IVT there exists $X \in [a,b]$ such that

0 = h(x) = f(x) - g(t)

4) SUPPOR XJYEE, XKY. Then there exists rEIR.Q, tcrcy. Let A=(-rogr) and 13=(r,2). Then A, 13 open ESQE AUB=IRIEr3 ANB = Ø * GANE, YEBNE. Thus E is not connected. So E counct contain 2 different elerente, and most have only one element.

$$\begin{aligned} \mathbf{5}_{a} \\ \lim_{k \to a} \frac{x^{3} - a^{3}}{x - a} \quad \lim_{k \to a} \frac{(x - a)(x^{2} + xa + a^{2})}{x - a} \\ = \lim_{k \to a} \frac{x^{2} + xa + a^{2}}{x - a} = a^{2} + a^{2} + a^{2} = 3a^{2} \\ \sum_{k \to a} f'(2) = 12 \end{aligned}$$

b)
$$\lim_{k \to a} \frac{x+2-(a+2)}{x-a} = \lim_{x \to a} |z| = 1$$
 so $g'(a)=1$.

()
$$1:m \frac{x^{2}(o_{3}(x) - 0)}{x - 0} = 1:m x(o_{3}(x)) = 0$$

 $x - 20 \frac{x - 0}{x - 20} = 1:m x(o_{3}(x)) = 0$
 $x - 20 \frac{x - 20}{x - 20} = 1:m x(o_{3}(x)) = 0$

C) $\lim_{X \to 0} \frac{X^{1/3}}{X} = \lim_{X \to 0} \frac{1}{X^{2/3}} does not exist (2)$

So F is not diff. at O.

$$\begin{array}{l} (1) & (2)$$

b)
$$\lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x}) - 0}{x - 0} = \lim_{x \to 0} \frac{x \sin(\frac{1}{x})}{x - 10}$$

Since
$$-X \leq X \sin\left(\frac{1}{X}\right) \leq X$$
 and $\lim_{X \to 0} x = 0$,
 $\lim_{X \to 0} x \sin\left(\frac{1}{X}\right) = 0$ by The squeeze theorem
 $x \to 0$
(if $\sin - 0$, $\sin\left(\frac{1}{\sin}\right) \to 0$) $\int_{0} f'(u) = 0$.

c) Define $S_n = \frac{1}{n\pi}$. Then $S_n \to O$ but $f'(S_n) = \frac{1}{n\pi} S_{in}(n\pi) - \cos(n\pi) = -\cos(n\pi)$ $= -(-i)^n + O = f'(O)$.

So flis not continuos.

- 8)
- a) Use the product rule and induction to show that $(x^n)' = nx^{n-1}$ for all $n \in \mathbb{N}$.
- b) Use the fact that $\left(\frac{1}{x}\right)' = \left(-\frac{1}{x^2}\right)$ and the chain and product rules to prove the quotient rule: If $I \subseteq \mathbb{R}$ is an open interval, $f, g: I \to \mathbb{R}$ are differentiable at $a \in I$, and $g(x) \neq 0$ for $x \in I$, then

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}.$$

a) when n = 1 (x)' = 1 by the definition:

$$\lim_{x \to a} \frac{x-a}{x-a} = 1.$$

Now assume $(x^n)' = nx^{n-1}$. Then by the product rule

$$(x^{n+1})' = (x^n)'x + x^n(x)' = (nx^{n-1})x + x^n = (n+1)x^n.$$

b) $\frac{f}{g}$ is the product of f and the composition of $\left(\frac{1}{x}\right) \circ g$. Since g is differentiable and nonzero and $\frac{1}{x}$ is differentiable at $x \neq 0$, $\left(\frac{1}{x}\right) \circ g$ is differentiable by the chain rule and $\frac{f}{g}$ is differentiable by the product rule. We compute:

$$\begin{split} \left(\frac{f}{g}\right)' &= \left[(f) \left(\left(\frac{1}{x}\right) \circ g \right) \right]' \\ &= f' \left(\left(\frac{1}{x}\right) \circ g \right) + f \left(\left(\frac{1}{x}\right) \circ g \right)' \\ &= \frac{f'}{g} + f \left(\left(-\frac{1}{x^2}\right) \circ g \right) g' \\ &= \frac{f'}{g} - \frac{fg'}{g^2} = \frac{f'g - fg'}{g^2} \end{split}$$