1) Let $\varepsilon>0$. Choose $\delta=\varepsilon$. If $x, y \in S$ and $d(x, y)<\delta$ then

$$
\begin{aligned}
& |f(x)-f(y)|=\left|d\left(x, x_{0}\right)-d\left(y, x_{0}\right)\right| \\
& \leq d(x, y)<\delta=\varepsilon .
\end{aligned}
$$

d) Construct a equere $s_{n}=\frac{f(n)}{n^{3}}$. Tunlimsu

$$
\begin{aligned}
& =\lim \frac{a_{0}}{n^{3}}+\lim \frac{a_{1}}{n^{2}}+\lim \frac{a_{2}}{n}+\lim a_{3} \\
& =0+0+0+a_{3}=a_{3}
\end{aligned}
$$

So $\frac{f(n)}{n^{3}} \rightarrow a_{3}$, and for sore n. $\frac{f\left(n_{1}\right)}{n_{1}}>0$, so $f\left(n_{1}\right)>0$.
Similarly, $\lim \frac{f(-n)}{(-n)^{3}}=a_{3}$
So for sure $n_{2} \frac{f\left(-n_{2}\right)}{\left(-n_{2}\right)^{3}}>0$
and $f\left(n_{2}\right)<0$, By the interredinte value theorem there exists $x \in\left(-n_{2}, n_{1}\right)$ such that $f(x)=0$.
3) De fie $n:(a, n\} \rightarrow \rightarrow R, n(x)=f(x)-s(x)$.

Then h is continues, $h(a)=f(a)-g(a) \geq 0$ and $h(b)=f(b)-g(b) \leq 0$.
Thus O is between $h(a)$ and $h(b)$, and by the IVT there exists $x \in[a, b]$ such That

$$
0=h(x)=f(x)-s(x)
$$

4) Suppose $x, y \in E, x<y$.

Then there exists $r \in \mathbb{R}, \mathbb{Q}$, $x<r<y$. Let $A=(\infty, r)$ and $B=(r, \infty)$. Then $A, 13$ open

$$
\begin{aligned}
& E \in \mathbb{Q} \subseteq A \cup B=\mathbb{R} \backslash\{r\} \\
& A \cap B=\varnothing \\
& r \in A \cap E, \quad y \in B \cap E . \quad \text { Thus }
\end{aligned}
$$

E is not connected. So E cannot contain 2 different element, and mast have only one element.
5) a)

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{x^{3}-a^{3}}{x-a}=\lim _{x \rightarrow a} \frac{(x-a)\left(x^{2}+x a+a^{2}\right)}{x-a} \\
& =\lim _{x \rightarrow a} x^{2}+x a+a^{2}=a^{2}+a^{2}+a^{2}=3 a^{2}
\end{aligned}
$$

so $\quad f^{\prime}(2)=12$.
b) $\lim _{x \rightarrow a} \frac{x+2-(a+2)}{x-a}=\lim _{x \rightarrow a} 1=1$ so $g^{\prime}(a)=1$.
c) $\lim _{x \rightarrow 0} \frac{x^{2}(\cos (x)-0}{x-0}=\lim _{x \rightarrow 0} x \cos (x)=0$

So $f^{\prime}(0)=0$.

$$
\begin{aligned}
& \text { d) } \lim _{x \rightarrow 1} \frac{\frac{3 x+4}{2 x-1}-7}{x-1}=\lim _{x \rightarrow 1} \frac{-11 x+11}{(2 x-1)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{-11}{2 x-1}=-11 \text { so } r^{\prime}(1)=-11 .
\end{aligned}
$$

b)
a)

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}=\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}\left(\frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}}\right) \\
& =\lim _{x \rightarrow a} \frac{x-a}{x-a}\left(\frac{1}{\sqrt{x}+\sqrt{a}}\right)=\lim _{x \rightarrow a} \frac{1}{\sqrt{x+\sqrt{a}}}=\frac{1}{2 \sqrt{a}} .
\end{aligned}
$$

b) $\lim _{x \rightarrow a} \frac{x^{\frac{1}{3}}-a^{\frac{1}{3}}}{x-a}=\lim _{x \rightarrow a} \frac{x^{\frac{1}{3}}-a^{\frac{1}{3}}}{x-a} \frac{\left(x^{\frac{2}{3}}+x^{\frac{1}{3}} a^{\frac{1}{3}}+a^{\frac{2}{3}}\right)}{\left(x^{\frac{2}{3}}+x^{\frac{1}{3}} a^{\frac{1}{3}}+a^{\frac{2}{3}}\right)}$

$$
=\lim _{x \rightarrow a}\left(\frac{x-a}{x-a}\right) \frac{1}{\left(x^{\frac{2}{3}}+x^{\frac{1}{3} a^{\frac{1}{3}}}+a^{\frac{2}{3}}\right)}=\frac{1}{3 a^{\frac{2}{3}}}
$$

c) $\lim _{x \rightarrow 0} \frac{x^{1 / 3}}{x}=\lim _{x \rightarrow 0} \frac{1}{x^{2 / 3}}$ dols noterist (∞)

So f is not diff. at O.
7) a) $x, \sin (x), \frac{1}{x}$ are all diff on $(0, \infty)$ or so by the product + chain roles f is diff. on $(0, \infty)$ and $(-\infty, 0)$, and for $a \neq 0$

$$
\begin{aligned}
f^{\prime}(a) & =2 a \sin \left(\frac{1}{a}\right)+a^{2} \cos \left(\frac{1}{a}\right)\left(-\frac{1}{a^{2}}\right) \\
& =2 a \sin \left(\frac{1}{a}\right)-\cos \left(\frac{1}{a}\right)
\end{aligned}
$$

b) $\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)-0}{x-0}=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$

Sine $-x \leq x \sin \left[\frac{1}{x}\right] \leq x$ and $\lim _{x \rightarrow 0} x=\lim _{x \rightarrow 0}-x=0$, $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$ by the squeeze theorem (if $\quad \sin \rightarrow 0, \quad \sin \sin \left(\frac{1}{s_{n}}\right) \rightarrow 0$) $s_{0} f^{\prime}(0)=0$.
c) Define $S_{n}=\frac{1}{n \pi}$. Then $S_{n} \rightarrow 0$
but $f^{\prime}\left(S_{n}\right)=\frac{2}{n \pi} \sin (n \pi)-\cos (n \pi)=-\cos (n \pi)$

$$
=-(-1)^{n} \rightarrow 0=f^{\prime}(0)
$$

So f^{\prime} is not continual.
a) Use the product rule and induction to show that $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for all $n \in \mathbb{N}$.
b) Use the fact that $\left(\frac{1}{x}\right)^{\prime}=\left(-\frac{1}{x^{2}}\right)$ and the chain and product rules to prove the quotient rule: If $I \subseteq \mathbb{R}$ is an open interval, $f, g: I \rightarrow \mathbb{R}$ are differentiable at $a \in I$, and $g(x) \neq 0$ for $x \in I$, then

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}}
$$

a) when $n=1(x)^{\prime}=1$ by the definition:

$$
\lim _{x \rightarrow a} \frac{x-a}{x-a}=1 .
$$

Now assume $\left(x^{n}\right)^{\prime}=n x^{n-1}$. Then by the product rule

$$
\left(x^{n+1}\right)^{\prime}=\left(x^{n}\right)^{\prime} x+x^{n}(x)^{\prime}=\left(n x^{n-1}\right) x+x^{n}=(n+1) x^{n} .
$$

b) $\frac{f}{g}$ is the product of f and the composition of $\left(\frac{1}{x}\right) \circ g$. Since g is differentiable and nonzero and $\frac{1}{x}$ is differentiable at $x \neq 0,\left(\frac{1}{x}\right) \circ g$ is differentiable by the chain rule and $\frac{f}{g}$ is differentiable by the product rule. We compute:

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime} & =\left[(f)\left(\left(\frac{1}{x}\right) \circ g\right)\right]^{\prime} \\
& =f^{\prime}\left(\left(\frac{1}{x}\right) \circ g\right)+f\left(\left(\frac{1}{x}\right) \circ g\right)^{\prime} \\
& =\frac{f^{\prime}}{g}+f\left(\left(-\frac{1}{x^{2}}\right) \circ g\right) g^{\prime} \\
& =\frac{f^{\prime}}{g}-\frac{f g^{\prime}}{g^{2}}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
\end{aligned}
$$

