Homework 8

Due Monday, Novermber 7 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

1. Let S be a metric space with distance function d. Fix a point $x_{0} \in S$. Define $f: S \rightarrow \mathbb{R}$ by $f(x)=d\left(x, x_{0}\right)$. Prove that f is uniformly continuous.
2. Let $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$ with $a_{3}>0$. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$. Prove that there exists $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}\right)=0$.
3. Ross 18.5 a.
4. Let E be a nonempty connected subset of \mathbb{R} such that $E \subset \mathbb{Q}$. Prove that E has exactly one element.
5. Ross 28.2
6. Ross 28.3
7. Ross 28.4
8. a) Use the product rule and induction to show that $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for all $n \in \mathbb{N}$.
b) Use the fact that $\left(\frac{1}{x}\right)^{\prime}=\left(-\frac{1}{x^{2}}\right)$ and the chain and product rules to prove the quotient rule: If $I \subseteq \mathbb{R}$ is an open interval, $f, g: I \rightarrow \mathbb{R}$ are differentiable at $a \in I$, and $g(x) \neq 0$ for $x \in I$, then

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}}
$$

