1) a jet $\varepsilon>0$. Choose $\delta=\varepsilon$.

If $x, y \in[1, \infty),|x-y|<\delta$, then since $\sqrt{x}+\sqrt{y} \geq 2$

$$
|\sqrt{x}-\sqrt{y}|=\frac{|\sqrt{x}-\sqrt{y}||\sqrt{x}+\sqrt{y}|}{\sqrt{x}+\sqrt{y}}=\frac{|x-y|}{\sqrt{x}+\sqrt{y}}<\frac{\delta}{2}<\varepsilon .
$$

b) Since fen: $\sqrt{x}$ is continuous and $\{0,2\}$ is Sequentially compact, $f$ is uniformly continuer.

Let $\varepsilon>0$.
C) Sine $f:\{0,2\} \rightarrow \mathbb{R}$ is unit. Cont, the eris $\delta_{1}>0$ such that if $x_{y} y \in[0,2],|x y|<\delta_{1}$, then $|\sqrt{x}-\sqrt{y}|<\varepsilon$.
Chose $\delta_{2}=\min \left\{\varepsilon, \delta_{1}, 1\right\}$. Let $x, y \in[0, \infty)$, $|x-y|<\delta_{2}, x<y$.

If $x<1$, then

$$
y<x+\delta_{2} \leq x+1<2
$$

So $x, y \in[0, \alpha]$ and $|x-y|<\delta_{r} \leq \delta_{1}$ implies $|\sqrt{x}-\sqrt{y}|<\varepsilon$.
2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the property that $f(x+1)=f(x)$ for all $x \in \mathbb{R}$. Prove that $f$ is uniformly continuous.
Let $\epsilon>0$. A continuous function on a closed interval is uniformly continuous, so if we change the domain to the subset $[0,2] \subset \mathbb{R}$, we get a uniformly continuous function. Since $f:[0,2] \rightarrow \mathbb{R}$ is uniformly continuous, there exists $\delta_{1}>0$ such that if $x, y \in[0,2]$ and $|x-y|<\delta_{1}$ then $|f(x)-f(y)|<\epsilon$.
Let $\delta_{2}=\min \left\{\delta_{1}, 1\right\}$. Now let $a, b \in \mathbb{R}$ with $|a-b|<\delta_{2}$. We can assume $a \leq b$. Let $n$ be the largest integer which such that $n \leq a$. Then $a<n+1$. Since $b<a+\delta_{2} \leq a+1<n+2, a, b \in[n, n+2]$. Then $a-n, b-n \in[0,2]$ and $|(a-n)-(b-n)|=|a-b|<\delta_{2} \leq \delta_{1}$ so $|f(a-n)-f(b-n)|<\epsilon$. Applying the property $n$ times, $|f(a)-f(b)|<\epsilon$. $(f(a-n)=f(a-n+1)=f(a-n+2)=\ldots=f(a-n+n))$
3) Let $y \in B_{\varepsilon}(x)$. Choose

$$
\begin{gathered}
\delta=\varepsilon-d(y, x)>0 . \quad \text { If } s \in B_{\delta}(y) \\
d(s, x) \leq d(s, y)+d(y, x)<\delta+d(y, x)=\varepsilon .
\end{gathered}
$$

So $s \in B_{\varepsilon}(x)$. Thus $B_{\delta}(y) \subseteq B_{\varepsilon}(x)$ proving $B_{\varepsilon}(x)$ is open.

Let $\left(S_{n}\right)$ be a equine in $\overline{B_{\Sigma}(x)}$ such that $s_{n} \rightarrow t$. Let $\delta>0$.
Thee exsis $n \in \mathbb{N}$ such phat $d\left(s_{n}, t\right)<\delta$,
So $\quad d(x, t) \leq d\left(x, s_{n}\right)+d\left(s_{n}, t\right)$

$$
\leq \varepsilon+\delta
$$

Sine $S_{n} \leftarrow \overline{3_{\varepsilon}(x)}$.
Since this is true for all $\delta>0$, $d(x, t) \leq \varepsilon_{\text {, }}$ and $t \in \overline{B_{\varepsilon}(x)}$.
$(1)$
a) $\cdot d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq\left|x_{1}-x_{2}\right| \geq 0$

If $d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=0$, then $\left|x_{1}-x_{2}\right|=0$
So $x_{1}=x_{2}$, and similarly $\left|y_{1}-y_{2}\right|=0$ so $y_{1}=y_{2}$. clearly $d^{\prime}((x, y),(x, y))=0$.
So $d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=0 \Leftrightarrow$

$$
\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) .
$$

- Since $\left|x_{1}-x_{2}\right|=\left|x_{2}-x_{1}\right|$ and $\left|y_{1}-y_{2}\right|=\left|y_{2}-y_{1}\right|$,

$$
d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d^{\prime}\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right) .
$$

- triangle inequality:

$$
\begin{aligned}
& d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left\{\begin{array}{l}
\left|x_{1}-x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right| \\
\left|y_{1}-y_{2}\right| \leq\left|y_{2}\right|+\left|y_{2}\right|
\end{array}\right. \\
& \leq \max \left\{\left|x_{1}\right|,\left|y_{1}\right|\right\}+\max \left\{\left|x_{2}\right|,\left|y_{2}\right|=d\left(\left(x_{1}, y_{1}\right),\left(y_{0}\right)\right\}\right. \\
& +d\left(\left(x_{2}, y_{2}\right),(0,0)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d\left(\left(x_{1}-x_{3}, y_{1}-y_{3}\right),\left(x_{2}-x_{3}, y_{2}-y_{3}\right)\right) \\
& \leq d\left(\left(x_{1}-x_{3}, y_{1}-y_{3}\right),(0,0)\right)+d\left(\left(x_{2}-x_{3}, y_{2}-y_{3}\right),(0,0)\right) \\
& =d\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)+d\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right) .
\end{aligned}
$$

b)

$$
\begin{aligned}
& B_{\varepsilon}((0,0)) \\
& =\left\{(x, y) \in \mathbb{R}^{2}| | x|<\varepsilon,|y|<\varepsilon\}\right. \\
& =\left\{(x, y) \in\left(\mathbb{R}^{2} \mid x \in(-\varepsilon, c), y \in(-\varepsilon, \varepsilon)\right\}\right.
\end{aligned}
$$

$d: \quad\left\{(x, y) \mid \sqrt{x^{2}+y^{2}}<\varepsilon\right\}$


Prove that a function $f: S \rightarrow S^{*}$ is continuous if and only if for ever closed set $E \subset S^{*}, f^{-1}(E)$ is also closed.

Note $x \in f^{-1}\left(S^{*} \backslash E\right)$ if and only if $f(x) \in S^{*} \backslash E$ if and only if $f(x) \notin E$. So $f^{-1}\left(S^{*} \backslash E\right)=$ $S \backslash f^{-1}(E)$.

Suppose $f$ is continuous. Let $E \subset S^{*}$ be closed. Then $S^{*} \backslash E$ is open, so $f^{-1}\left(S^{*} \backslash E\right)$ is open. So $f^{-1}(E)$ is closed.

Conversely, suppose that $f^{-1}(E)$ is closed whenever $E \subseteq S^{*}$ is closed. Then if $E$ is open, $S^{*} \backslash E$ is closed, so $f^{-1}\left(S^{*} \backslash E\right)$ is closed and $f^{-1}(E)$ is open. Thus $f$ is continuous.
6) a) Since inf and sup are low and upper pounds respectively, it $s \in I$, $x \leq s \leq y$ so $s \in\{x, y\}$. Thus $I \leq[x, y]$. Let $s \in(x, y)$. since $x=\inf I, x<s$, there exists $a \in I$ sect that $x \leq a<S$.
Since $y=\operatorname{sip} F, s<y$, there exists $b \in I$ sen that $y<b \leq y$. Thus $a<y<b$, and by the assumed property $y \in I$. So $(x, y) \subseteq I$.
b) There are sequences in I converging to $x$ and $y$, so if $I$ is closed, $x, y \in I$. Thus $[x, y]=\{x, y\} \cup(x, y) \leq I \subseteq\{x, y\}$, so $I=[x, y]$.
C) $\left(x-\frac{1}{n}\right),\left(y+\frac{1}{n}\right)$ are sequences in $\mathbb{R}$ - $I$ conversing to $x, y$, so it $I$ is open, R\I is closed, and $x, y \in \mathbb{R} \backslash I$.

Since $I \subseteq[x, y]$, we carouse that $I \subseteq(x, y)$ and since $(x, y) \subseteq I, \quad I=(x, y)$.

Let $S$ be a metric space with distance function $d$. Let $E$ and $F$ be connected subsets of $S$ such that $E \cap F$ is nonempty. Prove that $E \cup F$ is connected.

Suppose not. Let $A, B$ be open sets in $S$ such that $A \cap B \cap(E \cup F)=\varnothing, E \cup F \subseteq A \cup B$, $A \cap(E \cup F) \neq \varnothing$ and $B \cap(E \cup F) \neq \varnothing$. We can conclude that

$$
\begin{gathered}
A \cap B \cap E=\varnothing \\
A \cap B \cap F=\varnothing \\
E \subseteq A \cup B \\
F \subseteq A \cup B .
\end{gathered}
$$

Since $E$ and $F$ intersect, and $E \cup F \subset A \cup B$, a point of the intersection is in either $A$ or $B$, so either $A$ or $B$ intersects both $E$ and $F$. It follows that either $E$ or $F$ intersects both $A$ and $B$. Then either $E$ or $F$ satisfies all the conditions for being disconnected. This is a contradiction.

