1) a) Let ≤ 50 . Chook $S=\leq$.

If $x,y\in E_{1,\infty}$), |x-y|< J, then since $Jx+Jy\geq 2$. |Jx-Jy|=|Jx-Jy|Jx+Jy|=|X-Jy| $\leq \int_{\overline{X}}< \int_{\overline{X}}< \int_{\overline{X}}$

b) Since for Jx is continuous and [0,23 is Sequentially compact, f is uniformly continuous.

let 6>0.

C) Sine f: Cost -> OL is unit. Cont., the exist f: Do Such that if $f: Y, y \in Cost$, Imyl < di, then IF-Jy | C = 1.

Chose $\int_{2}^{2} = \min \{ \mathcal{E}, f_{i,j} \mid \}$. Let $x_{i,j} \in \mathcal{E}(0,\infty)$, $|x-y| < f_{2}$, x < y.

If x < 1, then $y < x + d_1 \leq x + 1 < 2$ So $x, y \in \{0, 4\}$ and $|x - y| < d_1 \leq d_1$ implies $|\sqrt{x} - \sqrt{y}| < \xi$.

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property that f(x+1) = f(x) for all $x \in \mathbb{R}$. Prove that f is uniformly continuous.

Let $\epsilon > 0$. A continuous function on a closed interval is uniformly continuous, so if we change the domain to the subset $[0,2] \subset \mathbb{R}$, we get a uniformly continuous function. Since $f:[0,2] \to \mathbb{R}$ is uniformly continuous, there exists $\delta_1 > 0$ such that if $x,y \in [0,2]$ and $|x-y| < \delta_1$ then $|f(x) - f(y)| < \epsilon$.

Let $\delta_2 = \min\{\delta_1, 1\}$. Now let $a, b \in \mathbb{R}$ with $|a-b| < \delta_2$. We can assume $a \le b$. Let n be the largest integer which such that $n \le a$. Then a < n+1. Since $b < a+\delta_2 \le a+1 < n+2$, $a, b \in [n, n+2]$. Then $a-n, b-n \in [0,2]$ and $|(a-n)-(b-n)|=|a-b|<\delta_2 \le \delta_1$ so $|f(a-n)-f(b-n)|<\epsilon$. Applying the property n times, $|f(a)-f(b)|<\epsilon$.

$$(f(a-n) = f(a-n+1) = f(a-n+2) = \dots = f(a-n+n))$$

3) Let $y \in B_{\varepsilon}(x)$. Change $S = \varepsilon - d(y, x) > 0$. If $s \in B_{\varepsilon}(y)$, $d(S, x) \leq d(S, y) + d(y, x) < \delta + d(y, x) = \varepsilon$. So $S \in B_{\varepsilon}(x)$. Thus $B_{\varepsilon}(y) \subseteq B_{\varepsilon}(x)$ open.

Let (Sn) be a sequere in $B_{\xi}(x)$ Sun that $S_{n}-t$. Let $\delta>0$. There exists new such that $d(S_{n}, t)<0$, So $d(X, t) \in d(X, S_{n}) + d(S_{n}, t)$ $\leq \xi + \delta$ Since $S_{n} \in [S_{\xi}(X)]$. Since this is true for all $\delta>0$, $d(X, t) \leq \xi$, and $t \in B_{\xi}(X)$.

- (1) a) · d'((x, y,), (x, y,)) = 1x, - x, 120 Ef d'((x, y,), (x, y,)) = 0, then 1x, -x, 120 So x = x, and similarly (y, -y, 1 = 0 so y, =y, clearly d'((x, y), (x, y)) =0. So d'((x, y,), (x, y,)) = 0 (=) (x, y,) = (x, y, y,).
 - Since (x,-x,1-1x,-x,1 and (y,-1,2)=1/2-1/1, d((x,y,),(x,y,1)=d'((x,y,h),(x,y,)).
 - triangle inequality: $d((X_1, Y_1), (X_2, Y_2)) = \begin{cases} |X_1 - X_2| \leq |X_1| + |X_2| \\ \text{or } |Y_1 - Y_2| \leq |Y_1| + |Y_2| \end{cases}$
 - Max { | x, | , | y, | 3 + mex { | 1xx | , | y, | = d((x, y,), | y,) | + d((x, y, y,), (0, 0)) -

Then
$$d((x_1, y_1), (x_2, y_2)) = d((x_1 - x_3, y_1 - y_3), (x_2 - x_3, y_2 - y_3))$$

$$\leq d((x_1 - x_3, y_1 - y_3), (0,00) + d((x_2 - x_3, y_2 - y_3), (9,00))$$

$$= d((x_1, y_1), (x_3, y_3)) + d((x_2, y_2), (x_3, y_3)).$$

$$b) \quad B_2((0,00))$$

$$= \{(x_1, y_1) \in \mathbb{R}^2 \mid |x| < \epsilon, |y| < \epsilon \}$$

$$= \{(x_3, y_1) \in \mathbb{R}^2 \mid |x| < \epsilon, |y| < \epsilon \}$$

$$= \{(x_3, y_1) \in \mathbb{R}^2 \mid |x| < \epsilon, |y| < \epsilon \}$$

$$= \{(x_3, y_1) \in \mathbb{R}^2 \mid |x| < \epsilon, |y| < \epsilon \}$$

$$= \{(x_3, y_1) \in \mathbb{R}^2 \mid |x| < \epsilon, |y| < \epsilon \}$$

$$= \{(x_3, y_1) \in \mathbb{R}^2 \mid |x| < \epsilon, |y| < \epsilon \}$$

$$= \{(x_3, y_1) \in \mathbb{R}^2 \mid |x| < \epsilon, |y| < \epsilon \}$$

$$= \{(x_3, y_1) \mid |x| < \epsilon, |y| < \epsilon \}$$

$$= \{(x_3, y_1) \mid |x| < \epsilon, |y| < \epsilon \}$$

$$= \{(x_3, y_1) \mid |x| < \epsilon, |y| < \epsilon \}$$

Prove that a function $f: S \to S^*$ is continuous if and only if for ever closed set $E \subset S^*$, $f^{-1}(E)$ is also closed.

Note $x \in f^{-1}(S^* \setminus E)$ if and only if $f(x) \in S^* \setminus E$ if and only if $f(x) \notin E$. So $f^{-1}(S^* \setminus E) = S \setminus f^{-1}(E)$.

Suppose f is continuous. Let $E \subset S^*$ be closed. Then $S^* \setminus E$ is open, so $f^{-1}(S^* \setminus E)$ is open. So $f^{-1}(E)$ is closed.

Conversely, suppose that $f^{-1}(E)$ is closed whenever $E \subseteq S^*$ is closed. Then if E is open, $S^* \setminus E$ is closed, so $f^{-1}(S^* \setminus E)$ is closed and $f^{-1}(E)$ is open. Thus f is continuous.

(b) a) Since inf and Sep are lower and upper bounds respectively, if s EI, XESEY SO SEEXY3. Thus I CEXYI. Let SE (X, y). Sine x inf I, x < S, Mere exists a CI Set That $\chi \leq a < 5$. Since y= Spf, SCY, Men exist b & F Sen that yebey. This acyclo, and y EI. So by the assumed property $(x,y) \leq T$.

b) There are Sequences in I converging to x and y, so if I is closed, $x, y \in I$. Thus $Cx_{y}y = \{x,y\} \cup (x,y) \in I \in Cx_{y}y\}$, so $I = Ex_{y}y$.

c) (x-h), (y+h) are sequences in R-I conversing to x, y, so if I is open, IRI is closed, and $x, y \in IRII$.

Since $I \subseteq ExyI$, we conclude that $E\subseteq (xy)$ and Since $(xy) \subseteq I$, I = (xy).

7)

Let S be a metric space with distance function d. Let E and F be connected subsets of S such that $E \cap F$ is nonempty. Prove that $E \cup F$ is connected.

Suppose not. Let A, B be open sets in S such that $A \cap B \cap (E \cup F) = \emptyset$, $E \cup F \subseteq A \cup B$, $A \cap (E \cup F) \neq \emptyset$ and $B \cap (E \cup F) \neq \emptyset$. We can conclude that

$$A \cap B \cap E = \emptyset$$
$$A \cap B \cap F = \emptyset$$
$$E \subseteq A \cup B$$
$$F \subseteq A \cup B.$$

Since E and F intersect, and $E \cup F \subset A \cup B$, a point of the intersection is in either A or B, so either A or B intersects both E and F. It follows that either E or F intersects both A and B. Then either E or F satisfies all the conditions for being disconnected. This is a contradiction.