Homework 8

Due Monday, October 31 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

1. a) Prove that $f:[1, \infty) \rightarrow \mathbb{R}, f(x)=\sqrt{x}$ is uniformly continuous.
b) Prove that $f:[0,2] \rightarrow \mathbb{R}, f(x)=\sqrt{x}$ is uniformly continuous (Hint: Use the result of HW 6, problem 2).
c) Use parts a and b to prove that $f:[0, \infty), f(x)=\sqrt{x}$ in uniformly continuous.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the property that $f(x+1)=f(x)$ for all $x \in \mathbb{R}$. Prove that f is uniformly continuous.
3. Let S be a metric space with distance function d. Let $x \in S$ and $\epsilon \in \mathbb{R}, \epsilon>0$. Prove that $B_{\epsilon}(x)=\{y \in S \mid d(y, x)<\epsilon\}$ is an open set. Prove that $\bar{B}_{\epsilon}(x)=\{y \in S \mid d(x, y) \leq \epsilon\}$ is a closed set.
4. a) Prove that $\mathbb{R}^{2}=\{(x, y) \mid x, y \in \mathbb{R}\}$ is a metric space with the alternate distance function

$$
d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\} .
$$

(Hint: for the triangle inequality, first proove that

$$
d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \leq d^{\prime}\left(\left(x_{1}, y_{1}\right),(0,0)\right)+d^{\prime}\left(\left(x_{2}, y_{2}\right),(0,0)\right)
$$

Then prove

$$
d^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d^{\prime}\left(\left(x_{1}-a, y_{1}-b\right),\left(x_{2}-a, y_{2}-b\right)\right)
$$

for any $a, b \in \mathbb{R}$.)
b) Let $\epsilon>0$. Draw a picture of the set $B_{\epsilon}((0,0))=\left\{(x, y) \in \mathbb{R}^{2} \mid d^{\prime}((x, y),(0,0))<\epsilon\right\}$, and the set $\left\{(x, y) \in \mathbb{R}^{2} \mid d((x, y),(0,0))<\epsilon\right\}$, where d is the usual distance function

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} .
$$

c) If you are interested, no need to hand in: Prove the triangle inequality for the usual distance function d on \mathbb{R}^{2} as given above.
5. Let S be a metric space with distance function d. Let S^{*} be a metric space with distance function d^{*}. Prove that a function $f: S \rightarrow S^{*}$ is continuous if and only if for ever closed set $E \subset S^{*}$, $f^{-1}(E)$ is also closed.
6. Let $I \subset \mathbb{R}$ be a bounded nonempty set with the property that if $a, b \in I$ and $a<c<b$ then $c \in I$. Let $x=\inf I$ and $y=\sup I$.
a) Prove that $(x, y) \subseteq I \subseteq[x, y]$.
b) If I is closed prove that $I=[x, y]$.
c) If I is open prove that $I=(x, y)$.
7. Let S be a metric space with distance function d. Let E and F be connected subsets of S such that $E \cap F$ is nonempty. Prove that $E \cup F$ is connected.

