Homework 7

1. Use the $\epsilon-\delta$ property to show that the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ are continuous (i.e. for each $x_{0} \in \mathbb{R}$, given $\epsilon>0$, find $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies $\left.\left|f(x)-f\left(x_{0}\right)\right|<\epsilon\right)$:
a) $f(x)=x^{2}$
b) $f(x)=x^{3}$. (Hint: $\left.x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)\right)$
a)

Let $x_{0} \in \mathbb{R}$. Let $\epsilon>0$. Chose $\delta=\min \left\{1, \frac{\epsilon}{2\left|x_{0}\right|+1}\right\}$. Then if $\left|x-x_{0}\right|<\delta$,

$$
\left|x^{2}-x_{0}^{2}\right|=\left|x-x_{0}\right|\left|x+x_{0}\right|<\delta\left(2\left|x_{0}\right|+\delta\right) \leq \epsilon .
$$

b)

Let $x_{0} \in \mathbb{R}$. Let $\epsilon>0$. Choose $\delta=\min \left\{1, \frac{\epsilon}{3\left|x_{0}\right|^{2}+3\left|x_{0}\right|+1}\right\}$. If $\left|x-x_{0}\right|<\delta$ then

$$
\begin{gathered}
\left|x^{3}-x_{0}^{3}\right|=\left|x-x_{0}\right|\left|x^{2}+x x_{0}+x_{0}^{2}\right|<\delta\left(\left(\left|x_{0}\right|+\delta\right)^{2}+\left|x_{0}\right|\left(\left|x_{0}\right|+\delta\right)+\left|x_{0}\right|^{2}\right) \\
\leq \delta\left(\left(\left|x_{0}\right|+1\right)^{2}+\left|x_{0}\right|\left(\left|x_{0}\right|+1\right)+\left|x_{0}\right|^{2}\right) \leq \epsilon
\end{gathered}
$$

2. Prove that $f:[0, \infty) \rightarrow \mathbb{R}, f(x)=\sqrt{x}$, is continuous.

If $x_{0}=0$ let $\delta=\epsilon^{2}$. Then if $x \in[0, \infty)$ and $|x|<\delta,|f(x)|=\sqrt{x}<\sqrt{\delta}=\epsilon$.
If $x_{0}>0$, chose $\delta=\sqrt{x_{0}} \epsilon$. Then if $x \in[0, \infty]$ and $\left|x-x_{0}\right|<\delta$, multiplying and dividing by $\sqrt{x_{0}}+\sqrt{x}$ we have

$$
\left|\sqrt{x}-\sqrt{x_{0}}\right|=\frac{\left|x-x_{0}\right|}{\left|\sqrt{x}+\sqrt{x_{0}}\right|}<\frac{\delta}{\sqrt{x_{0}}}=\epsilon
$$

3. In each part, prove that $f: \mathbb{R} \rightarrow \mathbb{R}$ is is not continuous at $x_{0}=0$.
a) $f(x)=1$ for $x>0$ and $f(x)=0$ for $x \leq 0$.
b) $f(x)=\sin (1 / x)$ for $x \neq 0$ and $f(0)=0$.
a) $\frac{1}{n} \rightarrow 0$ but $f\left(\frac{1}{n}\right)=1$ does not converge to $f(0)=0$.
b) $\frac{2}{\pi(2 n+1)} \rightarrow 0$ but $f\left(\frac{2}{\pi(2 n+1)}\right)=\sin \left(\frac{(2 n+1) \pi}{2}\right)=1$ does not converge to $f(0)=0$.
4) Let $\varepsilon=f\left(x_{0}\right)>0$. There exists $\delta>0$ sch that if $\left|x-x_{0}\right|<\delta$, 「 en $|f(x)-f(x) 0|<\varepsilon$, and so

$$
f(x)>f\left(x_{0}\right)-\varepsilon=0 .
$$

Thus $f(x)>0$ for all

$$
x \in\left(x_{0}-\delta, x_{0}+\delta\right) .
$$

a) Assume towards a contradiction that $f\left(x_{0}\right) \neq 0$ for $x \in(a, b)$. Then there exists $\delta>0$ such that $x \in(a, b),\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\left|f\left(x_{0}\right)\right|$ and thus $|f(x)|>0$. By denseness of \mathbb{Q}, there exists $r \in \mathbb{Q} \cap(a, b), x_{0}-\delta<r<x_{0}+\delta$. Then $\left|r-x_{0}\right|<\delta$ but $f(r)=0$, a contradiction.
b) $f(x)-g(x)$ has the property above and thus is 0 .
a) Let $r \in \mathbb{Q}$. For all n, let s_{n} be an irrational number in $\left(r, r+\frac{1}{n}\right)$. Then $s_{n} \rightarrow r$ but $f\left(s_{n}\right)=0$ does not converge to $f(r)=1$. So f is not continuous at r.
Let $s \in \mathbb{R} \backslash \mathbb{Q}$. For all n, let s_{n} be a rational number in $\left(s, s+\frac{1}{n}\right)$. Then $s_{n} \rightarrow s$ but $f\left(s_{n}\right)=1$ does not converge to $f(r)=0$.
b Let $x \neq 0$, chose $\epsilon=|x|$. Let $\delta>0$. There is a irrational number $s \in(x-\delta, x+\delta)$, but $|f(x)-f(s)|=|x| \geq \epsilon$.
Let $\epsilon>0$. Chose $\delta=\epsilon$. If $|x|<\delta$, either $f(x)=0<\epsilon$ or $|f(x)|=|x|<\epsilon$. Either way, this proves f is continuous.
$7)$ Since E is not Closed, There exists a sequence $\left(S_{n}\right)$ in E Such that $S_{n} \rightarrow S$ and $S \notin E$. Let $f: E \rightarrow I R$ be de fined by $f(x)=\frac{1}{x-5}$; this is not a problem Since $S \notin \in$. f is continues since it is a rational function.
we show that f is not bounded. Let $M>0$; choose $\varepsilon=\frac{1}{n}$. There exits $n \in \curvearrowright$ such that $\left|S_{n}-S\right|<\varepsilon$, so

$$
\left|f\left(s_{n}\right)\right|=\frac{1}{\left|s_{n}-s\right|}>\frac{1}{\varepsilon}=M \cdot S_{0}
$$

$f(E) \nsubseteq[-M, M]$ for any $M>0$, and f is not bounded.
8) A spume $\lim _{x \rightarrow x_{0}} f(x)=L$.

Let $\left(S_{n}\right)$ be a sequence in $\left(a, x_{0}\right)$,
$S_{n} \rightarrow X_{0}$. Then $\left(S_{n}\right)$ is a Square in $(a, b) \backslash\left\{x_{0}\right\}$,
So $g\left(S_{n}\right)=f\left(S_{n}\right) \rightarrow L$. Thus $\lim _{x \rightarrow x_{0}} g(r)=L$.
Let $\left(t_{n}\right)$ be a sequence in $\left(x_{0}, b\right)$, $t_{n} \rightarrow x_{0}$. Then $\left(t_{n}\right)$ is a Square in $\left(a_{j}, b\right) \backslash\left\{x_{0}\right\}$,
So $h\left(t_{n}\right)=f\left(t_{n}\right) \rightarrow L$. Thus $\lim _{x \rightarrow x_{0}} h(5)=L$.

Now assume $\lim _{x \rightarrow x_{0}} g(x)=\lim _{x \rightarrow x_{0}} h(x)=L$.
Let $\varepsilon>0$. There exist $\delta_{1}, \delta_{2}>0$ such that
if $x \in\left(a, x_{0}\right)$ and $\left|x-x_{0}\right|<\delta_{1}$ then $|g(x)-L|<\varepsilon$

$$
\text { so }|f(x)-t| c s
$$

If $x \in\left(x_{0}, b\right)$ and $\left|x-x_{0}\right|<\delta_{2}$ then $|h(x)-<|<\varepsilon$

$$
\text { so }(f(x)-c \mid c \varepsilon \text {. }
$$

Let $\delta=\min \left\{\delta_{j} \delta_{2}\right\}>0$. If $x \in(a, b) \backslash\left\{x_{0}\right\}$
Hen either $x \in\left(a, x_{0}\right), x \in\left(x_{0}, b\right)$, and it $\left|x-x_{0}\right| c \delta \leq \delta_{j} d_{2}$ then in either case $\mid f_{(x)}-<1<\varepsilon$. So

$$
\lim _{x \rightarrow x_{0}} f\left(x_{x}\right)=L .
$$

