Homework 7

- 1. Use the $\epsilon \delta$ property to show that the following functions $f : \mathbb{R} \to \mathbb{R}$ are continuous (i.e. for each $x_0 \in \mathbb{R}$, given $\epsilon > 0$, find $\delta > 0$ such that $|x x_0| < \delta$ implies $|f(x) f(x_0)| < \epsilon$):
 - a) $f(x) = x^2$
 - b) $f(x) = x^3$. (Hint: $x^3 y^3 = (x y)(x^2 + xy + y^2)$)
 - a) Let $x_0 \in \mathbb{R}$. Let $\epsilon > 0$. Chose $\delta = \min\{1, \frac{\epsilon}{2|x_0|+1}\}$. Then if $|x x_0| < \delta$,

$$|x^2 - x_0^2| = |x - x_0||x + x_0| < \delta(2|x_0| + \delta) \le \epsilon.$$

b) Let $x_0 \in \mathbb{R}$. Let $\epsilon > 0$. Choose $\delta = \min\{1, \frac{\epsilon}{3|x_0|^2 + 3|x_0| + 1}\}$. If $|x - x_0| < \delta$ then

$$|x^{3} - x_{0}^{3}| = |x - x_{0}||x^{2} + xx_{0} + x_{0}^{2}| < \delta((|x_{0}| + \delta)^{2} + |x_{0}|(|x_{0}| + \delta) + |x_{0}|^{2})$$

$$< \delta((|x_{0}| + 1)^{2} + |x_{0}|(|x_{0}| + 1) + |x_{0}|^{2}) < \epsilon.$$

2. Prove that $f:[0,\infty)\to\mathbb{R},\, f(x)=\sqrt{x},$ is continuous.

If $x_0 = 0$ let $\delta = \epsilon^2$. Then if $x \in [0, \infty)$ and $|x| < \delta$, $|f(x)| = \sqrt{x} < \sqrt{\delta} = \epsilon$.

If $x_0 > 0$, chose $\delta = \sqrt{x_0}\epsilon$. Then if $x \in [0, \infty]$ and $|x - x_0| < \delta$, multiplying and dividing by $\sqrt{x_0} + \sqrt{x}$ we have

$$|\sqrt{x} - \sqrt{x_0}| = \frac{|x - x_0|}{|\sqrt{x} + \sqrt{x_0}|} < \frac{\delta}{\sqrt{x_0}} = \epsilon$$

- 3. In each part, prove that $f: \mathbb{R} \to \mathbb{R}$ is is not continuous at $x_0 = 0$.
 - a) f(x) = 1 for x > 0 and f(x) = 0 for $x \le 0$.
 - b) $f(x) = \sin(1/x)$ for $x \neq 0$ and f(0) = 0.
 - a) $\frac{1}{n} \to 0$ but $f(\frac{1}{n}) = 1$ does not converge to f(0) = 0.
 - b) $\frac{2}{\pi(2n+1)} \to 0$ but $f(\frac{2}{\pi(2n+1)}) = \sin(\frac{(2n+1)\pi}{2}) = 1$ does not converge to f(0) = 0.

4) Let 2=f(x0)>0. There exists 500 such that if IX-Xolco, Ten (F(x)-f(x)) (L E, and so f(x)>f(x)-E=0. Thus FCX) >0 for all $x \in (x_0 - \sigma, x_0 + \sigma).$

5)

Ross 17.12 Hint: use the density of the rationals $\mathbb Q$

- a) Assume towards a contradiction that $f(x_0) \neq 0$ for $x \in (a,b)$. Then there exists $\delta > 0$ such that $x \in (a,b)$, $|x-x_0| < \delta$ implies $|f(x)-f(x_0)| < |f(x_0)|$ and thus |f(x)| > 0. By denseness of \mathbb{Q} , there exists $r \in \mathbb{Q} \cap (a,b)$, $x_0 \delta < r < x_0 + \delta$. Then $|r-x_0| < \delta$ but f(r) = 0, a contradiction.
- b) f(x) g(x) has the property above and thus is 0.

Ross 17.13 Hint: also use the density of the irrationals $\mathbb{R}\backslash\mathbb{Q}$

- a) Let $r \in \mathbb{Q}$. For all n, let s_n be an irrational number in $(r, r + \frac{1}{n})$. Then $s_n \to r$ but $f(s_n) = 0$ does not converge to f(r) = 1. So f is not continuous at r. Let $s \in \mathbb{R} \setminus \mathbb{Q}$. For all n, let s_n be a rational number in $(s, s + \frac{1}{n})$. Then $s_n \to s$ but $f(s_n) = 1$ does not converge to f(r) = 0.
- b Let $x \neq 0$, chose $\epsilon = |x|$. Let $\delta > 0$. There is a irrational number $s \in (x \delta, x + \delta)$, but $|f(x) f(s)| = |x| \geq \epsilon$. Let $\epsilon > 0$. Chose $\delta = \epsilon$. If $|x| < \delta$, either $f(x) = 0 < \epsilon$ or $|f(x)| = |x| < \epsilon$. Either way, this proves f is continuous.

Since E is not Closed, Mere

exists a sequence (Sn) in E

Such that Sn-DS and SEE.

Let f: E-DIR be defined by

f(x) = 1

X-S; This is not a problem

Since SEE. f is continuous since

it is a varional function.

We show that fis not bounded. Let M > 0; choose $E = \frac{1}{M}$. There exists $n \in \mathbb{N}$ such that $|S_n - S| < E$, so $|\{F(S_n)\}| = \frac{1}{|S_n - S|} > \frac{1}{E} = M$. S_0 $|\{F(E) \notin E - M_j M_j\}|$ for any M > 0, and $|\{F(E) \notin E - M_j M_j\}|$ for any M > 0, and $|\{F(E) \notin E - M_j M_j\}|$ for any M > 0, and 8) A ssume lim fer) = L. let (Sn) be a sequene in (a, xo), Sn -> Xo. Then (Sn) is a sequence in (a,b)\{xo}, So g(Sn) = f(Sn) -> L. Thus lim g(r)=L. So h(tn) = f(tn) -> L. Thus lim h Cr)=L. Now assume ling g(x)= ling h(x)= L. Let $\xi >0$. There exist G_{ij} , $G_{2}>0$ such that $1 + \xi <0$. There exist G_{ij} then $1 + \xi <0$. If $\xi <0$ and $1 + \xi <0$ so $1 + \xi <0$ so $1 + \xi <0$. If $x \in (x_0, b)$ and $(x-x_0) < d_2$ then $|h(x_1) - L| < \varepsilon$. So $(f(x_1) - L) < \varepsilon$. Let $S=\min\{J,J_2\}>0$. If $x\in(a,b)\setminus\{x_3\}$ Hen either XE(a, Ko), XE(Xo, b), and it (x-xo) coded, de then in either case 1 fors—616 8. So lim fen = L. X-750