Homework 7

Due Monday, October 24 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

1. Use the $\epsilon-\delta$ property to show that the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ are continuous (i.e. for each $x_{0} \in \mathbb{R}$, given $\epsilon>0$, find $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies $\left.\left|f(x)-f\left(x_{0}\right)\right|<\epsilon\right)$:
a) $f(x)=x^{2}$
b) $f(x)=x^{3}$. (Hint: $\left.x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)\right)$
2. Prove that $f:[0, \infty) \rightarrow \mathbb{R}, f(x)=\sqrt{x}$, is continuous.
3. In each part, prove that $f: \mathbb{R} \rightarrow \mathbb{R}$ is is not continuous at $x_{0}=0$.
a) $f(x)=1$ for $x>0$ and $f(x)=0$ for $x \leq 0$.
b) $f(x)=\sin (1 / x)$ for $x \neq 0$ and $f(0)=0$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Suppose $f\left(x_{0}\right)>0$ for some $x_{0} \in \mathbb{R}$. Prove that there is an open interval $(a, b) \subseteq \mathbb{R}$ such that $x_{0} \in(a, b)$ and $f(x)>0$ for all $x \in(a, b)$.
5. Ross 17.12 Hint: use the density of the rationals \mathbb{Q}
6. Ross 17.13 Hint: also use the density of the irrationals $\mathbb{R} \backslash \mathbb{Q}$
7. Let $E \subset \mathbb{R}$ be a set which is not closed. Show that there exists $f: E \rightarrow \mathbb{R}$ such that f is continuous and $f(E)$ is not bounded. (Hint: The function should have the form $1 /(x-c)$. What should c be?)
8. Let $a, b, x_{0} \in \mathbb{R}, a<x_{0}<b$, and let $f:(a, b) \rightarrow \mathbb{R}$ be a function. Define

$$
\begin{array}{ll}
g:\left(a, x_{0}\right) \rightarrow \mathbb{R} & g(x)=f(x) \text { for all } x \in\left(a, x_{0}\right) \\
h:\left(x_{0}, b\right) \rightarrow \mathbb{R} & h(x)=f(x) \text { for all } x \in\left(x_{0}, b\right) .
\end{array}
$$

(that is, g, h are simpy the restrictions of f to smaller domains). Prove that $\lim _{x \rightarrow x_{0}} f(x)=L$ if and only if

$$
\lim _{x \rightarrow x_{0}} g(x)=\lim _{x \rightarrow x_{0}} h(x)=L .
$$

(This may be a familiar theorem from calculus about left and right limits.)
Extra (not graded): Give an example of functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, such that

$$
\lim _{x \rightarrow x_{0}} f(x)=L, \quad \lim _{x \rightarrow L} g(x)=M \text { but } \quad \lim _{x \rightarrow x_{0}} g \circ f(x) \neq M
$$

