Homework 6

Due Monday, October 10 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. a) Give a definition of an open subset of \mathbb{R} .
 - b) Give a definition of a closed subset of \mathbb{R}
 - c) Given an example of a subset of \mathbb{R} which is open and not closed.
 - d) Given an example of a subset of \mathbb{R} which is closed and not open.
 - e) Given an example of a subset of \mathbb{R} which is neither closed nor open.
 - f) Give and example of a subset of \mathbb{R} which is both open and and closed.
- 2. Prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge. See Ross 14.14; the method there can be rephrased as:

Compare
$$\sum_{n=2^{(k-1)}}^{2^k-1} \frac{1}{n}$$
 to $\sum_{n=2^{(k-1)}}^{2^k-1} \frac{1}{2^k}$

- 3. Ross 15.1 and 15.2.
- 4. Prove that
 - a) $(1, \infty)$ is open and not closed.
 - b) $[1,\infty)$ is closed and not open.
 - c) [0,1) is neither open nor closed
 - d) $\{0\} \cup \{1, 1/2, 1/3, ..., 1/n, ...\}$ is closed and not open.
 - e) \mathbb{Q} is neither open nor closed.
- 5. Let $E \subset \mathbb{R}$ be an open set. Let (s_n) be a sequence which converges to $s \in E$. Prove that there exists $N \in \mathbb{R}$ such that n > N implies $s_n \in E$.
- 6. Let $E \subset \mathbb{R}$ be nonempty and sequentially compact. Prove that $\sup E$, $\inf E$ exist, and that $\sup E \in E$ and $\inf E \in E$.
- 7. For each $n \in \mathbb{N}$, let U_n be an open set and let V_n be a closed set.
 - a) Prove that the union of all the U_n is open.
 - b) Prove the intersection of all the V_n is closed.
 - c) Prove that for any $n \in \mathbb{N}$, $U_1 \cap U_2 \dots \cap U_n$ is open.
 - d) Give an example of collection of open sets U_n such that the intersection of all the U_n is not open.
 - e) Give an example of collection of closed sets V_n such that the union of all the V_n is not closed.