Homework 6 Due Monday, October 10 at 10am. Please upload a legible copy to Gradescope. You may work together, but the solutions must be written up in your own words. Show all work and justify all answers. - 1. a) Give a definition of an open subset of \mathbb{R} . - b) Give a definition of a closed subset of \mathbb{R} - c) Given an example of a subset of \mathbb{R} which is open and not closed. - d) Given an example of a subset of \mathbb{R} which is closed and not open. - e) Given an example of a subset of \mathbb{R} which is neither closed nor open. - f) Give and example of a subset of \mathbb{R} which is both open and and closed. - 2. Prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge. See Ross 14.14; the method there can be rephrased as: Compare $$\sum_{n=2^{(k-1)}}^{2^k-1} \frac{1}{n}$$ to $\sum_{n=2^{(k-1)}}^{2^k-1} \frac{1}{2^k}$ - 3. Ross 15.1 and 15.2. - 4. Prove that - a) $(1, \infty)$ is open and not closed. - b) $[1,\infty)$ is closed and not open. - c) [0,1) is neither open nor closed - d) $\{0\} \cup \{1, 1/2, 1/3, ..., 1/n, ...\}$ is closed and not open. - e) \mathbb{Q} is neither open nor closed. - 5. Let $E \subset \mathbb{R}$ be an open set. Let (s_n) be a sequence which converges to $s \in E$. Prove that there exists $N \in \mathbb{R}$ such that n > N implies $s_n \in E$. - 6. Let $E \subset \mathbb{R}$ be nonempty and sequentially compact. Prove that $\sup E$, $\inf E$ exist, and that $\sup E \in E$ and $\inf E \in E$. - 7. For each $n \in \mathbb{N}$, let U_n be an open set and let V_n be a closed set. - a) Prove that the union of all the U_n is open. - b) Prove the intersection of all the V_n is closed. - c) Prove that for any $n \in \mathbb{N}$, $U_1 \cap U_2 \dots \cap U_n$ is open. - d) Give an example of collection of open sets U_n such that the intersection of all the U_n is not open. - e) Give an example of collection of closed sets V_n such that the union of all the V_n is not closed.