Homework 5

Due Monday, October 3 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. Ross 9.12 and 9.14
- 2. Ross 11.10
- 3. Ross 12.6 and 12.8
- 4. Prove the following theorems from lecture
 - a) If (s_n) is monotonote and not bounded above, $s_n \to \infty$
 - b) If (s_n) is not bounded above then then (s_n) has a subsequence which diverges to infinity
 - c) If $s_n \neq 0$ for all $n \in \mathbb{N}$ then $s_n \to 0$ if and only if $\frac{1}{|s_n|} \to \infty$
- 5. Consider the series $\sum \frac{k^2}{3^k}$.
 - a) Use the ratio test to show the series converges.
 - b) Use the root test to show the series converges. (Recall that $\lim n^{1/n} = 1$)
 - c) Use the limit comparison test to show the series converges (Hint: Compare to a geometric series. You might need to consider only large k.)

6. Ross 14.2

7. Let $a_n \in \mathbb{R}$, $a_n > 0$ for all $n \in \mathbb{N}$. Consider the sequence $\left(\frac{a_{n+1}}{a_n}\right)$. Let $C \in \mathbb{R}$ such that

$$\limsup \frac{a_{n+1}}{a_n} < C.$$

Prove that there exists $N \in \mathbb{N}$ such that for n > N,

$$a_n < C^{n-N} a_N.$$

Extra (Not graded): There exists a sequence (s_n) such that the set of values is

$$\{s_n | n \in \mathbb{N}\} = \mathbb{Q} \cap [0, 1].$$

Find the set of subsequence limits of (s_n) .