Homework 4

Due Monday, September 26 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. a) Give the definition of lim sup and lim inf
 - b) Give an example of a sequence (s_n) such that the set of values $\{s_n | n \in \mathbb{N}\}\$ is infinite, $\limsup s_n = 2$, and $\liminf s_n = 1$.
 - c) Given an example of a sequence (s_n) such that $\sup\{s_n | n \in \mathbb{N}\} > \limsup s_n$
- 2. Prove, directly from the definition of a Cauchy sequence, that the following sequences are not Cauchy:
 - a) $s_n = n$
 - b) $t_n = (-1)^n$
- 3. Let S be a bounded nonempty subset of \mathbb{R} . Prove that there is a increasing sequence (s_n) of points in S such that $\lim s_n = \sup S$.
- 4. For each sequence, find a monotone subsequence converging to the limit or show that none exists.
 - a) $((-1)^n)$ b) $(\frac{1}{n})$ c) $((-1)^n + \frac{1}{n})$
- 5. Ross 10.10
- 6. a) Let a < 1. Prove that 1 + a + ... + aⁿ = ^{1-aⁿ⁺¹}/_{1-a}.
 b) Let (s_n) be a sequence in ℝ such that |s_{n+1} s_n| < 1/2ⁿ for all n. Prove that s_n is Cauchy.
- 7. Let $(s_n), (t_n)$ be bounded sequences. Prove that $(s_n + t_n)$ is bounded and

```
\limsup(s_n + t_n) \le \limsup(s_n) + \limsup(t_n)\liminf(s_n + t_n) \ge \liminf(s_n) + \liminf(t_n).
```

Give examples of $(s_n), (t_n)$ such that the inequalities above are not equalities.