Homework 3

Due Monday, September 19 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. a) State what it means for a sequence (s_n) to converge to $s \in \mathbb{R}$.
 - b) State what it means for a sequence (s_n) to not converge to $s \in \mathbb{R}$.
 - c) Give an example of a sequence (s_n) such that $s_n < 0$ for all $n \in \mathbb{N}$ and $s_n \to 0$.
 - d) Give an example of a bounded sequence which does not converge.
- 2. Ross 8.8
- 3. Prove that each of the following sequences does not converge to any $s \in \mathbb{R}$.
 - a) (n)
 - b) $\left(\cos\left(\frac{n\pi}{3}\right)\right)$
 - c) $\left(\sin\left(\frac{n\pi}{3}\right)\right)$
 - d) $(1 + (-1)^n)$
- 4. a) Ross 8.5, part a.
 - b) Ross 8.6, part a.
- 5. a) Ross 8.9
 - b) Ross 8.10
- 6. Let $r \in \mathbb{R}$. Prove that there exists a sequence (s_n) such that $s_n \in \mathbb{Q}$ for all $n \in \mathbb{N}$ and $s_n \to r$.
- 7. a) Ross 9.1
 - b) Ross 9.2
- 8. Let s_n be defined inductively by $s_1 = 2$ and $s_{n+1} = \frac{s_n}{2} + \frac{1}{s_n}$.
 - a) Show that $s_n^2 2 \ge 0$ for all $n \in \mathbb{N}$.
 - b) Prove that s_n is monotone. Prove that s_n converges.
 - c) Find $\lim s_n$ and justify your answer. Hint: Consider each side of the equation above as a sequence, and find its limit using limit theorems.

Extra (not graded): Assume, for this problem, that the completeness axiom fails (that is, there extists a nonempty set $S \subset \mathbb{R}$ with an upper bound but no supremum.) Shows that in that case there exists a sequence (s_n) of real numbers which is monotone and bounded but does not converge.