Homework 2

Due Monday, September 12 at 10am. Please upload a legible copy to Gradescope.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. What is the definition of the supremum of a set? What is the definition of the infimum of a set? Give an example of
 - a) A set $S \subseteq \mathbb{R}$ such that $\sup S \in S$
 - b) A set $S \subseteq \mathbb{R}$ such that $\sup S \in \mathbb{R} \setminus S$
 - c) A set $S \subseteq \mathbb{R}$ which does not have a supremum.
- 2. Ross, 4.11.
- 3. Ross, 4.15.
- 4. Prove that $S = \{r \in \mathbb{R} | r^2 < 2\}$ has a supremum. If $s = \sup S$, prove that $s^2 = 2$. Do not use the number $\sqrt{2}$ in your proof.
- 5. a) Find $N_1 \in \mathbb{R}$ such that if $n > N_1$, then $n + 6 \le 7n$
 - b) Find $N_2 \in \mathbb{R}$ such that if $n > N_2$, then $n^2 6 \ge \frac{n^2}{2}$
 - c) Find $N_3 \in \mathbb{R}$ such that if $n > N_3$, $\left| \frac{n+6}{n^2-6} \right| < \frac{14}{n}$.
 - d) Let $\epsilon > 0$. Find $N_4 \in \mathbb{R}$ such that if $n > N_4$, $14/n < \epsilon$.
 - e) Use parta a-d to prove, directly from the definition of convergence of a sequence, that

$$\frac{n+6}{n^2-6} \to 0.$$

- 6. a) Find $N_1 \in \mathbb{R}$ such that if $n > N_1$, then $n + 6 \le 7n$
 - b) Find $N_2 \in \mathbb{R}$ such that if $n > N_2$, then $n^2 6 \ge n^2 6n > 0$
 - c) Find $N_3 \in \mathbb{R}$ such that if $n > N_3$, $\left| \frac{n+6}{n^2-6} \right| < \frac{7}{n-6}$.
 - d) Let $\epsilon > 0$. Find $N_4 \in \mathbb{R}$ such that if $n > N_4$, $\frac{7}{n-6} < \epsilon$.
 - e) Use parta a-d to prove, directly from the definition of convergence of a sequence, that

$$\frac{n+6}{n^2-6} \to 0.$$

- 7. Ross 8.1. Prove that the sequence converges to that limit directly from the definition; do not use any limit theorems.
- 8. Ross 8.2. Prove that the sequence converges to that limit directly from the definition; do not use any limit theorems.

1