1 Let $f_{n}, f: S \rightarrow \mathbb{R}$ be functions, for all $n \in \mathbb{N}$. Prove that $f_{n} \rightarrow f$ uniformly if and only if

$$
\lim _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in S\right\}=0
$$

Suppose $f_{n} \rightarrow f$ uniformly. Let $\epsilon>0$. Chose $N \in \mathbb{R}$ such that $n>N, x \in S$ implies $\left|f_{n}(x)-f(x)\right|<\epsilon / 2$. Then

$$
\sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in S\right\} \leq \epsilon / 2<\epsilon \text { for all } n>N
$$

Thus $\lim _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in S\right\}=0$.

Now assume $\lim _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in S\right\}=0$. Let $\epsilon>0$. Choose $N \in \mathbb{R}$ such that $n>N$ implies

$$
\sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in S\right\}<\epsilon
$$

For $n>N, x \in S$

$$
\left|f_{n}(x)-f(x)\right| \leq \sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in S\right\}<\epsilon
$$

For $n \in \mathbb{N}$, define $f_{n}:[0,1] \rightarrow \mathbb{R}, f_{n}(x)=\left(x-\frac{1}{n}\right)^{2}$. Find $f:[0,1] \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow f$ uniformly, and prove your assertion.

Let $f(x)=x^{2}$.

$$
\left|(x-1 / n)^{2}-x^{2}\right|=\left|-\frac{2 x}{n}+\frac{1}{n^{2}}\right| \leq \frac{2}{n}+\frac{1}{n^{2}} \leq \frac{3}{n}
$$

Thus

$$
0 \leq \sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in[0,1]\right\} \leq \frac{3}{n}
$$

and

$$
\lim _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in[0,1]\right\}=0
$$

by the squeeze theorem. Thus $f_{n} \rightarrow f$ uniformly.

For $n \in \mathbb{N}$, define $f_{n}:[0,1] \rightarrow \mathbb{R}, f_{n}(x)=n x^{n}(1-x)$. Let $f:[0,1] \rightarrow \mathbb{R}$ be $f(x)=0$. Prove that $f_{n} \rightarrow f$ pointwise, but not uniformly. Recall $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

If $x=0,1, f_{n}(x)=0$ for all n, so $f_{n}(x) \rightarrow 0$.
If $x \in(0,1), f_{n}(x)=n x^{n}(1-x) \rightarrow 0$ because $n x^{n} \rightarrow 0$: using a previous HW problem,

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1) x^{n+1}}{n x^{n}}\right|=x \lim _{n \rightarrow \infty} \frac{n+1}{n}=x<1
$$

(or, if you want to use L'hospitals rule, which we did not cover and you are not expected to use Define $g:(0, \infty) \rightarrow \mathbb{R}, g(y)=y x^{y}\left(x\right.$ is treated as a constant). By L'hopsital's rule, since x^{-y} and $\left(x^{-y}\right)^{\prime}$ are nonzero

$$
\lim _{y \rightarrow \infty} g(y)=\lim _{y \rightarrow \infty} \frac{y}{x^{-y}}=\lim _{y \rightarrow \infty} \frac{1}{-\log (x) x^{-y}}=0
$$

Thus $\lim _{n \rightarrow \infty} n x^{n}=\lim _{n \rightarrow \infty} g(n)=0$.)

By solving $f^{\prime}(0)$ se see that $f_{n}(x)$ achieves its maximum at $x=\frac{1}{1+\frac{1}{n}}$ so

$$
\sup \left\{\mid f_{n}(x)-f(x) \| x \in[0,1]\right\}=f_{n}\left(\frac{1}{1+\frac{1}{n}}\right)=n\left(\frac{1}{1+\frac{1}{n}}\right)^{n}\left(\frac{\frac{1}{n}}{1+\frac{1}{n}}\right) \rightarrow \frac{1}{e}
$$

so f_{n} does not converge to f uniformly.

Define $g_{k}:(0,1) \rightarrow \mathbb{R}$ by $g_{k}(x)=x^{k}$. Prove that $\sum_{k=0}^{\infty} g_{k}$ converges pointwise to $f(x)=\frac{1}{1-x}$ (that is, the sequence of partial sums converges pointwise). Prove that $\sum_{k=0}^{\infty} g_{k}$ does not converge uniformly.

The partial sums are given by

$$
f_{n}(x)=\sum_{k=0}^{n} g_{k}=\frac{1-x^{n+1}}{1-x} .
$$

These converge to $\frac{1}{1-x}$ for each $x \in(0,1)$ (for each x this is just a geometric series).
However, for all $x \in(0,1)$

$$
\left|f_{n}(x)-f(x)\right|=\frac{x^{n+1}}{1-x} \geq x^{n+1}
$$

so for all n

$$
\sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in(0,1)\right\} \geq\left(\frac{1}{2^{\frac{1}{n+1}}}\right)^{n+1}=\frac{1}{2}
$$

Thus f_{n} does not converge to f uniformly, and $\sum g_{k}$ does not converge uniformly.
$5) \quad \operatorname{Ross} 25.3$

$$
\left|\frac{1}{2}-\frac{n+\cos x}{2 n+\sin ^{2} x}\right|=\left|\frac{\sin ^{2} x-2 \cos x}{4 n+2 \sin ^{2} x}\right| \leq \frac{3}{4 n-2} \rightarrow 0
$$

so

$$
\sup \left\{\left.\left|\frac{1}{2}-f_{n}(x)\right| \right\rvert\, x \in \mathbb{R}\right\} \rightarrow 0
$$

and $f_{n} \rightarrow \frac{1}{2}$ uniformly. Thus

$$
\lim _{n \rightarrow \infty} \int_{2}^{7} f_{n}=\int_{2}^{7} \frac{1}{2}=\frac{5}{2}
$$

6) For each $n \in \mathbb{N}$, define $f_{n}:(-1,1) \rightarrow \mathbb{R}$ by $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n}}$.
a) Prove that $\left(f_{n}\right)$ converges uniformly to $f(x)=|x|$.
b) Prove that f_{n} is differentiable and find f_{n}^{\prime}.
c) Find the function $g:(-1,1) \rightarrow \mathbb{R}$ such that $\left(f_{n}^{\prime}\right)$ converges pointwise to g. Prove that $\left(f_{n}^{\prime}\right)$ does not converge uniformly to g.
a)

$$
\left|\sqrt{x^{2}+\frac{1}{n}}-|x|\right|=\left|\frac{\left(\sqrt{x^{2}+\frac{1}{n}}-|x|\right)\left(\sqrt{x^{2}+\frac{1}{n}}+|x|\right)}{\sqrt{x^{2}+\frac{1}{n}}+|x|}\right| \leq\left|\frac{x^{2}+\frac{1}{n}-|x|^{2}}{\frac{1}{\sqrt{n}}}\right|=\frac{1}{\sqrt{n}}
$$

Thus

$$
\lim _{n \rightarrow \infty} \sup \left\{\mid f_{n}(x)-f(x) \| x \in(-1,1)\right\} \leq \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
$$

and $f_{n} \rightarrow f$ uniformly.
b) \sqrt{y} is differentiable when $y \neq 0$ and $x^{2}+\frac{1}{n}$ is differentiable and nonzero so f_{n} is differentiable and

$$
f_{n}^{\prime}(x)=\frac{x}{\sqrt{x^{2}+\frac{1}{n}}}
$$

by the chain rule.
c) Let $g(x)=1$ for $x>1, g(0)=0$, and $g(x)=-1$ for $x<1$.

For $x>1, \lim _{n \rightarrow \infty} \frac{x}{\sqrt{x^{2}+\frac{1}{n}}}=\frac{x}{\sqrt{x^{2}}}=\frac{x}{|x|}=1$.
For $x=0, f_{n}^{\prime}(0)=0$ for all n.
For $x<0, \lim _{n \rightarrow \infty} \frac{x}{\sqrt{x^{2}+\frac{1}{n}}}=\frac{x}{|x|}=-1$.
So $f_{n}^{\prime} \rightarrow g$ pointwise. However, g is not continuous, and each f_{n}^{\prime} is continuous (the ratio of nonzero continuous functions), so the convergence cannot be uniform.

Prove that $\sum_{n=1}^{\infty} n x^{n}$ converges to $\frac{x}{(1-x)^{2}}$ for $x \in(-1,1)$. Hint: (Use the fact that $\sum_{n=0}^{\infty} x^{n}$ converges to $\frac{1}{1-x}$).

The radius of convergence of $\sum_{k=0}^{\infty} x^{n}$ is 1 , and for $x \in(-1,1)$

$$
\sum_{k=0}^{\infty} x^{n}=f(x)=\frac{1}{1-x}
$$

By the theorem on derivatives of power series, for $x \in(-1,1)$

$$
f^{\prime}(x)=\frac{1}{(1-x)^{2}}=\sum_{k=1}^{\infty} n x^{n-1}
$$

Fixing $x \in(-1,1)$, we cha multiply every element of the series by x, and the series will converge to x times the previous limit. So

$$
\sum_{k=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}
$$

C Use the fact that for each $x \in \mathbb{R}, e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ to prove that $\left(e^{x}\right)^{\prime}=e^{x}$.

Since the power series converges to e^{x} for all $x \in \mathbb{R}$, the radius of convergence must be \mathbb{R}. Thus the derivative of e^{x} is given by the power series formed by differentiation each element in the original power series:

$$
\left(e^{x}\right)^{\prime}=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}=\sum_{m=0}^{\infty} \frac{x^{m}}{m^{!}}=e^{x}
$$

Define $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{-x^{2}}$. Find a power series which converges at each $x \in \mathbb{R}$ to $\int_{0}^{x} f$.
Fix $x \in \mathbb{R}$. Let $y=-x^{2}$. We know that

$$
e^{-x^{2}}=e^{y}=\sum_{n=0}^{\infty} \frac{y^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n} .
$$

This is a power series in x with coefficients $a_{2 n}=(-1)^{n} / n!$ and $a_{2 n+1}=0$ for all $n \in \mathbb{N} \cup\{0\}$. Since the equation is true for any $x \in \mathbb{R}$, the radius of convergence of this power series must be ∞. Thus we can integrate term by term, and

$$
\int_{0}^{x} f=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) n!} x^{2 n+1}
$$

This in turn is a power series with coeeficients $a_{2 n+1}=\frac{(-1)^{n}}{(2 n+1) n!}$ and $a_{2 n}=0$ for all $n \in \mathbb{N} \cup\{0\}$.

Prove that there does not exists a power series which converges pointwise to $f:(-1,1) \rightarrow \mathbb{R}$, $f(x)=|x|$

If such a power series existed, it would have positive radius of convergence, and thus the limit would be differentiable at 0 . But $|x|$ is not differentiable at 0 . (This follows from using the definitimon of the derivative, from Ross 29.17 , or from the following argument: If $|x|$ were differentiable at 0 , the image of the derivative would be an interval by the intermediate value theorem for derivatives, but it would also be $\left\{-1,1, f^{\prime}(0)\right\}$, which cannot be an interval).

