$\int \hat{I} f x = y_{j}$ the inequality is true. DF XZJ Since Cos is differentiable on (R, there exists CE (X, Y) Such that

 $\frac{(os(y) - (os(x))}{y - x} = (os'(c) = - sin(c))$

Thus since Sin(c) EE-51],

 $\frac{(vs(x) - (os(y))}{x - y}$ - (Sin (C) / 5 (.

A) Ross 29.5

Let $a \in \mathbb{R}$. We first prove that f is differentiable at a and f'(a) = 0. Let $\epsilon > 0$. Let $\delta = \epsilon$. If $x \in \mathbb{R} \setminus \{a\}$ and $|x - a| < \delta$ then

$$\left|\frac{f(x) - f(x)}{x - a}\right| \le \frac{(x - a)^2}{|x - a|} = |x - a| < \delta = \epsilon.$$

Thus $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = 0$ and f'(a) = 0. Since this is true for all $a \in \mathbb{R}$, f is constant.

2) Ross 29.13

Let h(x) = g(x) - f(x). By Derivative theorems, h is differentiable and $h'(x) = g'(x) - f'(x) \ge 0$. Thus h is nondecreasing, and in particular $h(x) \ge h(0) = 0$ for all $x \ge 0$. Thus $g(x) \ge f(x)$ for all $x \ge 0$.

() Ross 29.17

Let $\epsilon > 0$. There exists δ_1 such that if $x \in I \setminus \{a\}$ and $|x - a| < \delta_1$ then

$$\left|\frac{g(x) - g(a)}{x - a} - g'(a)\right| < \epsilon$$

There exists δ_2 such that if $x \in I \setminus \{a\}$ and $|x - a| < \delta_1$ then

$$\left|\frac{f(x) - f(a)}{x - a} - f'(a)\right| < \epsilon$$

First, assume that f(a) = g(a) and f'(a) = g'(a). Let $\delta = \min\{\delta_1, \delta_2\}$. Let $x \in I \setminus \{a\}$ such that $|x - a| < \delta$. If x > a then since $|x - a| < \delta \le \delta_1$

$$\left|\frac{h(x) - h(a)}{x - a} - g'(a)\right| = \left|\frac{g(x) - g(a)}{x - a} - g'(a)\right| < \epsilon$$

If x < a then since $|x - a| < \delta \le \delta_2$ and f(a) = g(a)

$$\frac{h(x) - h(a)}{x - a} - g'(a) \bigg| = \bigg| \frac{f(x) - g(a)}{x - a} - g'(a) \bigg| = \bigg| \frac{f(x) - g(a)}{x - a} - f'(a) \bigg| < \epsilon.$$

In either case,

$$\left|\frac{h(x)-h(a)}{x-a}-g'(a)\right|<\epsilon.$$

Thus $\lim_{x\to a} \frac{h(x)-h(a)}{x-a} = g'(a)$ and h is differentiable at a.

Now assume $f(a) \neq g(a)$. Let $x_n = a - \frac{1}{n}$ so $x_n \to a$ Since $x_n < a$, $h(x_n) = f(x_n)$. Since f is differentiable at a, f is continuous at a, and $f(x_n) \to f(a)$. But $f(a) \neq g(a) = h(a)$, so $h(x_n)$ does not converge to h(a) and h is not continuous at a. A differentiable function is continuous so h is not differentiable at a.

Finally, assume g(a) = f(a) but $f'(a) \neq g'(a)$. Let $x_n = a + \frac{(-1)^n}{n}$ for all $n \in \mathbb{N}$. Then for large $n \ x_n \in I \setminus \{a\}$ and $x_n \to a$. But $x_{2n} > a$ so

$$\frac{h(x_{2n}) - h(a)}{x_{2n} - a} = \frac{g(x_{2n}) - g(a)}{x_{2n} - a} \to g'(a)$$

while $x_{2n-1} < a$ so

$$\frac{h(x_{2n-1}) - h(a)}{x_{2n-1} - a} = \frac{f(x_{2n-1}) - g(a)}{x_{2n-1} - a} = \frac{f(x_{2n-1}) - f(a)}{x_{2n-1} - a} \to f'(a).$$

Since all subsequences of a covnergent sequence converge to the same limit, $\frac{h(x_n)-h(a)}{x_n-a}$ does not converge. Thus h is not differentiable at a.

5) Suppose there exist $x, y \in I$ such that f'(x) < 0 and f'(y) > 0. Then by the intermediate value that for derivatives there exists $2 \in I$ such that f'(z) = 0, which contradicts the assumption. Thy either f'(x) < 0 for all $x \in I$, and f is strictly decreasing, on f'(x) > 0 for all $x \in I$ on f is strictly increasing.

6) Ross, 32.6

Let $U_n = U(f, P_n)$ and $L_n = L(f, Q_n)$ for partitions P_n, Q_n , and assume $\lim_{n \to \infty} (U_n - L_n) = 0$. Let $\epsilon > 0$. There exists N such that for $n > N U_n - L_n < \epsilon$. then

$$U(f, P_n \cup Q_n) - L(f, P_n \cup Q_n) \le U(f, P_n) - L(f, Q_n) < \epsilon.$$

So f is integrable. Since $U_n \ge \int_a^b f \ge L_n$, for n > N

$$\left| U_n - \int_a^b f \right| < \epsilon$$

$$\left| L_n - \int_a^b f \right| < \epsilon$$

and

so
$$\lim U_n = \lim L_n = \int_a^b f$$
.

Let $a, b \in \mathbb{R}, a < b$. Prove that $f : [a, b] \to \mathbb{R}, f(x) = x$ is integrable, and find $\int_a^b f$. Let (b - a) = (b - a) = (b - a)

$$P_n = \left\{ a, a + \frac{b-a}{n}, a + 2\frac{(b-a)}{n}, \dots, a + (n-1)\frac{(b-a)}{n}, b \right\}.$$

In other words, $P_n = \{t_0 < t_1 < ... < t_n\}$ where $t_k = a + k \frac{b-a}{n}$. Then

$$U(f, P_n) = \sum_{k=1}^n \left(a + k \frac{b-a}{n} \right) \frac{b-a}{n} = a(b-a) + \frac{(b-a)^2}{n^2} \sum_{k=1}^n k = a(b-a) + (b-a)^2 \frac{n(n-1)}{2n^2}$$
$$L(f, P_n) = \sum_{k=1}^n \left(a + (k-1)\frac{b-a}{n} \right) \frac{b-a}{n} = a(b-a) - \frac{(b-a)^2}{n} + \frac{(b-a)^2}{n^2} \sum_{k=1}^n k$$
$$= a(b-a) - \frac{(b-a)^2}{n} + (b-a)^2 \frac{n(n-1)}{2n^2}.$$

The rest follows from problem 5. In detail: Let $\epsilon > 0$. Chose $n > (b-a)^2/\epsilon$. Then

$$U(f, P_n) - L(f, P_n) = \frac{(b-a)^2}{n} < \epsilon.$$

So f is integrable. It follows that for $n>(b-a)^2/\epsilon,$

$$\left| U(f, P_n) - \int_a^b f \right| < \epsilon$$

 \mathbf{so}

$$\int_{a}^{b} f = \lim_{n \to \infty} U(f, P_n) = \frac{b^2}{2} - \frac{a^2}{2}.$$

8) By density of IRIR, every interval contains on
invational number X at which
$$f(X)=0$$
, and
 $0 \le f(y)$ for all $y \in \{0,1\}$. So
 $M(f, (thus, thc)) = 0$ for any $then, the, and$
 $M(f, P)=0$ for any partition P of (c_{f}, C) ,
and thus $L(f) = 0$.

$$f(Etx-i, tx) \in (tx-i, tx) \cup \{0\}, \quad \text{so } tx \text{ is an upper}$$

bound for $f(Ctx-i, tx)$. If $r < tx$, f^{leve}
exists $x \in \mathbb{Q}$ such that $\max\{6x-i, r\} < x < tx$
(density of \mathbb{Q}) and thus $r \leq x \leq f(x) \in f(Ctx-i, tx)$,
so ris not an upper band for $f(Ctx-i, tx)$.
Thus $M(f, Ctx-i, tx) = tx$.

let $: [0,1] \rightarrow \mathbb{R}$ be $g(x) = x$. Since $g(i)$ increasing

$$M(g, Ctn-1, tx] = tx = M(f, Ctn-1, tu).$$
 Thus
 $V(f, P) = U(g, P)$, for all pointitions P, and thus
 $U(f) = U(g) = Sg = \frac{1}{2}$.

Since U(f) = 1 70= L(f), f is not integrable.