1) If $x=y$, the inequality is true. If $x<y$, since cos is differentiable or (\&, there exists $c \in(x, y)$ such that

$$
\frac{\cos (y)-\cos (x)}{y-x}=\cos ^{\prime}(c)=-\sin (c)
$$

Thus since $\sin (c) \in[-c, 1]$,

$$
\left|\frac{\cos (x)-\cos (y)}{x-y}\right|=|\sin (c)| \leq 1
$$

2) $\operatorname{Ross} 29.5$

Let $a \in \mathbb{R}$. We first prove that f is differentiable at a and $f^{\prime}(a)=0$. Let $\epsilon>0$. Let $\delta=\epsilon$. If $x \in \mathbb{R} \backslash\{a\}$ and $|x-a|<\delta$ then

$$
\left|\frac{f(x)-f(x)}{x-a}\right| \leq \frac{(x-a)^{2}}{|x-a|}=|x-a|<\delta=\epsilon
$$

Thus $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=0$ and $f^{\prime}(a)=0$. Since this is true for all $a \in \mathbb{R}, f$ is constant.
3) Ross 29.13

Let $h(x)=g(x)-f(x)$. By Derivative theorems, h is differentiable and $h^{\prime}(x)=g^{\prime}(x)-f^{\prime}(x) \geq 0$. Thus h is nondecreasing, and in particular $h(x) \geq h(0)=0$ for all $x \geq 0$. Thus $g(x) \geq f(x)$ for all $x \geq 0$.

Let $\epsilon>0$. There exists δ_{1} such that if $x \in I \backslash\{a\}$ and $|x-a|<\delta_{1}$ then

$$
\left|\frac{g(x)-g(a)}{x-a}-g^{\prime}(a)\right|<\epsilon
$$

There exists δ_{2} such that if $x \in I \backslash\{a\}$ and $|x-a|<\delta_{1}$ then

$$
\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right|<\epsilon
$$

First, assume that $f(a)=g(a)$ and $f^{\prime}(a)=g^{\prime}(a)$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Let $x \in I \backslash\{a\}$ such that $|x-a|<\delta$. If $x>a$ then since $|x-a|<\delta \leq \delta_{1}$

$$
\left|\frac{h(x)-h(a)}{x-a}-g^{\prime}(a)\right|=\left|\frac{g(x)-g(a)}{x-a}-g^{\prime}(a)\right|<\epsilon
$$

If $x<a$ then since $|x-a|<\delta \leq \delta_{2}$ and $f(a)=g(a)$

$$
\left|\frac{h(x)-h(a)}{x-a}-g^{\prime}(a)\right|=\left|\frac{f(x)-g(a)}{x-a}-g^{\prime}(a)\right|=\left|\frac{f(x)-g(a)}{x-a}-f^{\prime}(a)\right|<\epsilon
$$

In either case,

$$
\left|\frac{h(x)-h(a)}{x-a}-g^{\prime}(a)\right|<\epsilon .
$$

Thus $\lim _{x \rightarrow a} \frac{h(x)-h(a)}{x-a}=g^{\prime}(a)$ and h is differentiable at a.

Now assume $f(a) \neq g(a)$. Let $x_{n}=a-\frac{1}{n}$ so $x_{n} \rightarrow a$ Since $x_{n}<a, h\left(x_{n}\right)=f\left(x_{n}\right)$. Since f is differentiable at a, f is continuous at a, and $f\left(x_{n}\right) \rightarrow f(a)$. But $f(a) \neq g(a)=h(a)$, so $h\left(x_{n}\right)$ does not converge to $h(a)$ and h is not continuous at a. A differentiable function is continuous so h is not differentiable at a.
Finally, assume $g(a)=f(a)$ but $f^{\prime}(a) \neq g^{\prime}(a)$. Let $x_{n}=a+\frac{(-1)^{n}}{n}$ for all $n \in \mathbb{N}$. Then for large $n x_{n} \in I \backslash\{a\}$ and $x_{n} \rightarrow a$. But $x_{2 n}>a$ so

$$
\frac{h\left(x_{2 n}\right)-h(a)}{x_{2 n}-a}=\frac{g\left(x_{2 n}\right)-g(a)}{x_{2 n}-a} \rightarrow g^{\prime}(a)
$$

while $x_{2 n-1}<a$ so

$$
\frac{h\left(x_{2 n-1}\right)-h(a)}{x_{2 n-1}-a}=\frac{f\left(x_{2 n-1}\right)-g(a)}{x_{2 n-1}-a}=\frac{f\left(x_{2 n-1}\right)-f(a)}{x_{2 n-1}-a} \rightarrow f^{\prime}(a)
$$

Since all subsequences of a covnergent sequence converge to the same limit, $\frac{h\left(x_{n}\right)-h(a)}{x_{n}-a}$ does not converge. Thus h is not differentiable at a.
5) suppose there exist $x, y \in I$ such that $f^{\prime}(x)<0$ and $f^{\prime}(y)>0$. Then by The intermediate value the for derivatives flense exists $z \in I$ such that $f^{\prime}(z)=0$, which contradicts the a sumption. Thy enter $f^{\prime}(x)<0$ for all $x \in I$, and f is strictly decreasing, or $f^{\prime}(x)>0$ for all $x \in I$ an f is strictly increasing.
6) Ross, 32.6

Let $U_{n}=U\left(f, P_{n}\right)$ and $L_{n}=L\left(f, Q_{n}\right)$ for partitions P_{n}, Q_{n}, and assume $\lim _{n \rightarrow \infty}\left(U_{n}-L_{n}\right)=0$. Let $\epsilon>0$. There exists N such that for $n>N U_{n}-L_{n}<\epsilon$. then

$$
U\left(f, P_{n} \cup Q_{n}\right)-L\left(f, P_{n} \cup Q_{n}\right) \leq U\left(f, P_{n}\right)-L\left(f, Q_{n}\right)<\epsilon
$$

So f is integrable. Since $U_{n} \geq \int_{a}^{b} f \geq L_{n}$, for $n>N$

$$
\left|U_{n}-\int_{a}^{b} f\right|<\epsilon
$$

and

$$
\left|L_{n}-\int_{a}^{b} f\right|<\epsilon
$$

so $\lim U_{n}=\lim L_{n}=\int_{a}^{b} f$.

Let $a, b \in \mathbb{R}, a<b$. Prove that $f:[a, b] \rightarrow \mathbb{R}, f(x)=x$ is integrable, and find $\int_{a}^{b} f$.
Let

$$
P_{n}=\left\{a, a+\frac{b-a}{n}, a+2 \frac{(b-a)}{n}, \ldots, a+(n-1) \frac{(b-a)}{n}, b\right\} .
$$

In other words, $P_{n}=\left\{t_{0}<t_{1}<\ldots<t_{n}\right\}$ where $t_{k}=a+k \frac{b-a}{n}$. Then

$$
\begin{gathered}
U\left(f, P_{n}\right)=\sum_{k=1}^{n}\left(a+k \frac{b-a}{n}\right) \frac{b-a}{n}=a(b-a)+\frac{(b-a)^{2}}{n^{2}} \sum_{k=1}^{n} k=a(b-a)+(b-a)^{2} \frac{n(n-1)}{2 n^{2}} \\
L\left(f, P_{n}\right)=\sum_{k=1}^{n}\left(a+(k-1) \frac{b-a}{n}\right) \frac{b-a}{n}=a(b-a)-\frac{(b-a)^{2}}{n}+\frac{(b-a)^{2}}{n^{2}} \sum_{k=1}^{n} k \\
=a(b-a)-\frac{(b-a)^{2}}{n}+(b-a)^{2} \frac{n(n-1)}{2 n^{2}} .
\end{gathered}
$$

The rest follows from problem 5. In detail:
Let $\epsilon>0$. Chose $n>(b-a)^{2} / \epsilon$. Then

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\frac{(b-a)^{2}}{n}<\epsilon .
$$

So f is integrable. It follows that for $n>(b-a)^{2} / \epsilon$,

$$
\left|U\left(f, P_{n}\right)-\int_{a}^{b} f\right|<\epsilon
$$

so

$$
\int_{a}^{b} f=\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\frac{b^{2}}{2}-\frac{a^{2}}{2} .
$$

8) By density of $\mathbb{R} \backslash \mathbb{Q}$, every interval contains an irrational number x at which $f(x)=0$, and $0 \leq f(y)$ for all $y \in\{0,1\}$. So
$m\left(f,\left[t_{k-1}, t_{k}\right]\right)=0$ for any t_{k-1}, t_{k}, and $L(f, P)=0$ for any partition P of $[\alpha,(]$, and thar $L(f)=0$.
$f\left(\left[t_{k-1}, t_{k}\right]\right) \subseteq\left[t_{k-1}, t_{k}\right] \cup\{0\}$, So t_{k} is anupper bound for $f\left(\left[t_{u-1}, t_{c}\right\}\right)$. If $r<t_{k j}$, there exists $x \in \mathbb{Q}$ such that $\max \left\{t_{x-1}, r\right\}<x<t_{k}$ (density of $\mathbb{Q})$ and thus $r<x=f(x) \in f\left(\left[t_{k-1}, t_{k}\right]\right)$, So r is not an upper bound for $f\left(\left[k_{k-1}, b_{k}\right]\right)$. Thus $M\left(f_{j}\left[t_{k-1}, t_{k}\right\}\right)=t_{k}$.
let : $[0,1] \rightarrow \mathbb{R}$ be $g(x)=x$. Since g is increasing,
$M\left(g,\left[t_{k-1}, t_{k}\right\}\right)=t_{k}=M\left(f,\left\{t_{k-1,}, t_{u}\right\}\right)$. Thus $U(f, p)=U(g, p)$, for all partitions p, and thees $u(f)=u(g)=\int_{0}^{1} g=\frac{1}{2}$.

Since $d(f)=\frac{1}{2} \neq 0=L(f), \quad f$ is ut integrable.

