Name: \qquad
SID: \qquad

Instructions :

1. You have 80 minutes, $7: 10 \mathrm{pm}-8: 30 \mathrm{pm}$.
2. No books, notes, or other outside materials are allowed.
3. There are 6 questions on the exam.
4. You need to show all of your work and justify all statements. If you need more space, use the pages at the back of the exam or come get more paper at the front of the class. If you do so, please indicate which page your solution continues on.
5. Before you begin, take a quick look at all the questions on the exam, and start with the one you feel the most comfortable solving. It is more important to do the problems well that you know how to do, than it is to finish the whole exam.
6. While attempting any problem, do write something even if you are unable to solve it completely. You may get partial credit.
(Do not fill these in; they are for grading purposes only.)

1	
2	
3	
4	
5	
6	
Total	

1. (10 points) Find the limit s of the sequence $\left(\frac{3 n^{3}+2}{2 n^{3}-n}\right)$. Prove that the sequence converges to s using only the definition of convergence (no theorems or other limits).

$$
\frac{3 n^{3}+2}{2 n^{3}-n} \rightarrow \frac{3}{2}
$$

Let $\left\{>0\right.$. Choose $N=\sqrt{\frac{\nabla}{2 \varepsilon}}$
If $n \in \mathcal{N}, n>N$ then

$$
\begin{gathered}
\left|\frac{3 n^{2}+2}{2 n^{3}-n}-\frac{3}{\alpha}\right|=\left|\frac{4+3 n}{4 n^{3}-2 n}\right| \leq \frac{7 n}{4 n^{3}-2 n} \quad \begin{array}{l}
\text { sine } n \geq 1, \\
4 n \geq 4
\end{array} \\
=\frac{7}{4 n^{2}-2} \leq \frac{7}{2 n^{2}}<\frac{7}{2 N^{2}}=\varepsilon .
\end{gathered}
$$

Sine $2 \leqslant 2 n^{2}$
2. Let S and T be bounded subsets of $(0, \infty)$. Define

$$
R=\{s t \mid s \in S, t \in T\}
$$

(a) (5 points) Prove that there exists a sequence in R which converges to $\sup (S) \sup (T)$.
(b) (5 points) Prove that $\sup (R)=\sup (S) \sup (T)$.
a) There exist, a sequence $\left(S_{n}\right)$ in $S_{,} S_{n} \rightarrow \operatorname{sep} S$ There exists a sequent $\left[t_{n}\right]$ in T, $t_{n} \rightarrow$ sup T Thus $S_{n} t_{n} \in R$ and $S_{n} t_{n} \rightarrow$ SupSsupT.
b) If $s t \in R_{j}$ since $s, t>0$,

$$
s t \leq \sup (S) t \leq \sup (S) \sup (T)
$$

So $\sup (S) \operatorname{Sup}(T)$ is an $U B$ for R and $\sup (R) \leq \sup (S) \sup (T)$.
Let $r<\sup (S) \sup (T)$. Then there exists $N \in \mathbb{R}$
such that if $n>N$,

$$
\left|S_{n} t_{n}-\sup (S) \operatorname{sep}(t)\right|<\sup (S) \operatorname{sep}(T)-r \text {. }
$$

So $S_{n} t_{n}>r$, and This r is not an $U B$
for R. Thus $\sup (R) \geq \sup (s) \operatorname{sep}(T)$
3. (5 points) Let $L=\lim \sup \left(\left(s_{n}\right)\right)$. Let $\epsilon>0$. Prove that there exists $N \in \mathbb{R}$ such that $n \in \mathbb{N}, n>N$ implies $s_{n}<L+\epsilon$.
Let $\quad V_{N}=\sup T_{N}=\sup \left\{\sin \mid n \in N_{J} n \nsim N\right\}$.
Then $V_{N} \rightarrow L_{\text {, }}$ so there exists $N \in \mathbb{R}$
Such that $\left|V_{N}-L\right|<\varepsilon$
which implies $V_{N}<L+E$.
Thus if $n \in \mathbb{N}_{,} n>N, \quad S_{n} \leq V_{N}<2+\Sigma$.
4. (10 points) Define

$$
a_{k}=\left\{\begin{array}{cc}
\frac{k}{2^{k}} & \text { if } k \text { is odd } \\
\frac{1}{3^{k}} & \text { if } k \text { is even. }
\end{array}\right.
$$

Prove that $\sum_{k=1}^{\infty} a_{k}$ converges.
For all $k,\left|a_{k}\right| \leq \frac{k}{2 k}$, became

$$
\frac{1}{3^{k}} \leq \frac{1}{2^{k}} \leq \frac{k}{2^{k}}
$$

Sine $\lim \frac{k+1}{2^{(k+1)}} \frac{2^{k}}{k}=\lim \frac{1}{2}\left(1+\frac{1}{k}\right)=\frac{1}{2}<1$,
$\sum \frac{k}{2^{k}}$ converges by the ratio test.
So $\sum a_{k}$ converges by limit comparison.
5. a) (5 points) Prove that $S=\left\{\left.\frac{1}{2^{k}} \right\rvert\, k \in \mathbb{N}\right\}$ is neither open nor closed.
b) (5 points) Let $T \subset \mathbb{R}$ be a nonempty, open, bounded set. Prove that $\sup (T)$ is not an element of T.
a) $\left(\frac{1}{2^{k}}\right)$ is a sequere in S, hat

$$
\frac{1}{2^{k}} \rightarrow 0 \notin S \text {, so } \text { Sis natcloodel. }
$$

$\frac{1}{2}=$ mat S, but for all $\varepsilon>0$,

$$
\frac{1}{2}+\frac{\varepsilon}{2} \in\left(\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right) \text {, and } \frac{1}{2}+\frac{\varepsilon}{2} \nu \frac{1}{2} \text {, so }
$$ $\frac{1}{2}+\frac{\varepsilon}{2} \notin S$ and $\left(\frac{1}{2}-\varepsilon_{j} \frac{1}{2}+\varepsilon\right) \notin S$. So S is not open.

b) If $r \in T$, there ϵ lists $\varepsilon>0$ such that $(r-\varepsilon, r+\varepsilon) \subseteq T$, so $r+\frac{\varepsilon}{2} \in T$, and r is not an upper band for T. So $\operatorname{syp}(T) \notin T$.
6. (5 points) Prove that $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=\left\{\begin{array}{ccc}
x & \text { if } & x \in \mathbb{N} \\
x^{2} & \text { if } & x \in \mathbb{R} \backslash \mathbb{N}
\end{array}\right.
$$

is not continuous.
For all $n \in N, \quad 2<2+\frac{1}{2 n}<3$
so $\quad 2+\frac{1}{2 n} \& N$.

$$
\begin{aligned}
& 2+\frac{1}{2 n} \rightarrow 2+0=2 \text {, but } \\
& f\left(2+\frac{1}{2 n}\right)=\left(2+\frac{1}{2 n}\right)^{2} \rightarrow 2^{2}=4 \neq f(2)=2 .
\end{aligned}
$$

