Lecture 5, 9/9/21Material corresponds to Ross §10.

Bounded and Monotone Sequences

Defenition Let (s_n) be a sequence in \mathbb{R} .

- 1. (s_n) is **bounded** if $\{s_n\}$ is bounded.
- 2. (s_n) is **nondecreasing** if $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$.
- 3. (s_n) is **nonincreasing** if $s_n \ge s_{n+1}$ for all $n \in \mathbb{N}$.
- 4. (s_n) is **monotone** if it is nondecreasing or nonincreasing.

Theorem A bounded monotone sequence converges.

lim sup and lim inf

Definition For a bounded sequence (s_n) in \mathbb{R} :

$$\limsup s_n = \lim_{N \to \infty} \sup \{s_n | n > N\}$$
$$\liminf s_n = \lim_{N \to \infty} \inf \{s_n | n > N\}$$

Theorem Let (s_n) be a bounded sequence in \mathbb{R} . Then (s_n) converges if and only if $\liminf s_n = \limsup s_n$. If s_n converges then $\lim s_n = \liminf s_n = \limsup s_n$.

Cauchy Sequences

Definition A sequence (s_n) is Cauchy if for all $\epsilon > 0$ there exists $N \in \mathbb{R}$ such that if n, m > N then $|s_n - s_m| < \epsilon$.

Lemma A Cauchy sequence is bounded.

Theorem A sequence in \mathbb{R} converges if and only if it is Cauchy.