Lecture 2, 8/31/21 Material corresponds to Ross §4.

Completeness

Let $S \subseteq \mathbb{R}$.

 $r_0 \in S$ is the **maximum** of S if $r_0 \in S$ and $r \leq r_0$ for all $r \in S$. (write $r_0 = \max S$) $r_0 \in S$ is the **minimum** of S if $r_0 \in S$ and $r_0 \leq r$ for all $r \in S$. (write $r_0 = \min S$)

 $M \in \mathbb{R}$ is an **upper bound** for S if $r \leq M$ for all $r \in S$. $m \in \mathbb{R}$ is a **lower bound** for S if $m \leq r$ for all $r \in S$.

S is **bounded above** if it has an upper bound.

S is **bounded below** if it has a lower bound.

S is **bounded** if it is bounded above and below.

 $r_0 \in \mathbb{R}$ is the **supremum** of S if it is the least upper bound of S. (write $r_0 = \sup S$) $\iff r_0$ is an upper bound for S and if r is another upper bound for S then $r_0 \le r$. $\iff r_0 = \min\{r \in \mathbb{R} \mid r \text{ is an upper bound for } S\}$.

 $r_0 \in S$ is the **infimum** of S if it is the greatest lower bound of S. (write $r_0 = \inf S$) $\iff r_0$ is a lower bound for S and if r is another lower bound for S then $r \leq r_0$. $\iff r_0 = \max\{r \in \mathbb{R} | r \text{ is a lower bound for } S\}$.

If $r_0 = \max S$ then $r_0 = \sup S$. If $r_0 = \min S$ then $r_0 = \inf S$.

Completeness Axoim If $S \subset \mathbb{R}$ is nonempty and bounded above then S has a supremum.

Corollary If $S \subset \mathbb{R}$ is nonempty and bounded below then S has an infimum.

Archimedean Principle Let $a, b \in \mathbb{R}$, a, b > 0. Then there exists $n \in \mathbb{N}$ such that na > b.

Denseness of \mathbb{Q} Let $a, b \in \mathbb{R}$, a < b. Then there exists $r \in \mathbb{Q}$ such that a < r < b.

Denseness of irrational numbers Let $a, b \in \mathbb{R}$, a < b. Then there exists $r \notin \mathbb{Q}$ such that a < r < b.

Interval Notation

$$\begin{split} [a,b] &= \{r \in \mathbb{R} | \ a \leq r \leq b\} \\ (a,b) &= \{r \in \mathbb{R} | \ a < r < b\} \\ (a,b] &= \{r \in \mathbb{R} | \ a < r \leq b\} \\ [a,b) &= \{r \in \mathbb{R} | \ a \leq r < b\} \\ [a,\infty) &= \{r \in \mathbb{R} | \ a \leq r\} \\ (a,\infty) &= \{r \in \mathbb{R} | \ a < r\} \\ (-\infty,b] &= \{r \in \mathbb{R} | \ r \leq b\} \\ (-\infty,b) &= \{r \in \mathbb{R} | \ r < b\} \end{split}$$