Homework 6

Due Tuesday, October 12 at 10am. Please upload a legible copy to bCourses.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. Let a>1. Prove that $f:\mathbb{R}\to\mathbb{R}, f(x)=a^x$ is continuous. You may use the following facts without proof:
 - $a^0 = 1$
 - $\bullet \ a^{x+y} = a^x a^y$
 - If x < y then $a^x < a^y$
 - Ross Theorem 9.7, (d)
- 2. Ross 17.12 Hint: use the density of the rationals $\mathbb Q$
- 3. Ross 17.13 Hint: also use the density of the irrationals $\mathbb{R}\backslash\mathbb{Q}$
- 4. Prove that $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ in not uniformly continuous.
- 5. Let $a_0, a_1, a_2, a_3 \in \mathbb{R}$ with $a_3 \neq 0$. Consider the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$. Prove that there exists $x_0 \in \mathbb{R}$ such that $f(x_0) = 0$.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Let (x_n) be a Cauchy sequence. Prove that $(f(x_n))$ is a Cauchy sequence.
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property that f(x+1) = f(x) for all $x \in \mathbb{R}$. Prove that f is uniformly continuous.