Homework 3

Due Tuesday, September 21 at 10am. Please upload a legible copy to bCourses.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. Ross 8.2 a), c) and e). This time, use limit theorems (Ross Theorems 9.2-9.6, as well as the result you proved in Ross Problem 8.5.)
- a) Let a < 1. Prove that 1 + a + ... + aⁿ = ^{1-aⁿ⁺¹}/_{1-a}
 b) Let (s_n) be a sequence in ℝ such that |s_{n+1} s_n| < 1/2ⁿ for all n. Prove that s_n is Cauchy.
- 3. Ross 10.7: Let S be a bounded nonempty subset of \mathbb{R} and suppose $\sup S \notin S$. Prove that there is a nondecreasing sequence (s_n) of points in S such that $\lim s_n = \sup S$.
- 4. Assume that $s_n \to s$. Prove that $\liminf s_n \ge s$. (This was a step in the proof that a sequence converges if and only if $\limsup = \liminf$).
- 5. Let s_n be defined inductively by $s_1 = 2$ and $s_{n+1} = \frac{s_n}{2} + \frac{1}{s_n}$.
 - a) Show that $s_n^2 2 > 0$ for all $n \in \mathbb{N}$.
 - b) Prove that s_n is monotone. Prove that s_n converges.
- 6. Let s_n be the sequence defined in the previous problem.
 - a) Find $\lim s_n$ and justify your answer. (Hint: We know (s_n) converges. For large n, s_n and s_{n+1} are very close to $\lim s_n$. What equation must $\lim s_n$ satisfy?)
 - b) Conclude that there are Cauchy sequences in \mathbb{Q} which do not converge to any $s \in \mathbb{Q}$.
- 7. For each sequence (s_n) below, find the following and justify your answer:
 - $\liminf s_n$ and a monotone subsequence (t_k) of (s_n) such that $t_k \to \liminf s_n$.
 - $\limsup s_n$ and a monotone subsequence (r_l) of (s_n) such that $r_l \to \limsup s_n$
 - a) $s_n = (-1)^n$
 - b) $s_n = (-1/2)^n$
 - c) $s_n = (-1)^n + 1/n$