Homework 11

Due Thursday, December 2 at 10am. Please upload a legible copy to bCourses.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

1. Let $f_n, f: S \to \mathbb{R}$ be functions, for all $n \in \mathbb{N}$. Prove that $f_n \to f$ uniformly if and only if

$$\lim_{n \to \infty} \sup \{ |f_n(x) - f(x)| \mid x \in S \} = 0.$$

- 2. For $n \in \mathbb{N}$, define $f_n : [0,1] \to \mathbb{R}$, $f_n(x) = \left(x \frac{1}{n}\right)^2$. Find $f : [0,1] \to \mathbb{R}$ such that $f_n \to f$ uniformly, and prove your assertion.
- 3. For $n \in \mathbb{N}$, define $f_n : [0,1] \to \mathbb{R}$, $f_n(x) = nx^n(1-x)$. Let $f : [0,1] \to \mathbb{R}$ be f(x) = 0. Prove that $f_n \to f$ pointwise, but not uniformly. Recall $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$.
- 4. Ross 25.7
- 5. Define $g_k:(0,1)\to\mathbb{R}$ by $g_k(x)=x^k$. Prove that $\sum_{k=0}^{\infty}g_k$ converges pointwise to $f(x)=\frac{1}{1-x}$ (that is, the sequence of partial sums converges pointwise). Prove that $\sum_{k=0}^{\infty}g_k$ does not converge uniformly.
- 6. Ross 25.3
- 7. Ross 23.1 a, c, e, g.