Practice Problems

These problems mostly cover the second half of the semester. They do not cover every topic, and are meant as extra practice, not a comprehensive review.

- 1. Let $f, g : [a, b] \to \mathbb{R}$ be continuous functions such that $\int_a^b f = \int_a^b g$. Prove that f(x) = g(x) for some $x \in [a, b]$.
- 2. Find the Taylor series for $f: (-1,1) \to \mathbb{R}$, $f(x) = \sqrt{1-x}$. Use Taylor's theorem to prove that the Taylor series converges to f.
- 3. Define $f_n : \mathbb{R} \to \mathbb{R}$ by $f_n(x) = \frac{x}{1+nx^2}$. Find $f : \mathbb{R} \to \mathbb{R}$ such that $f_n \to f$ uniformly. Prove that $\lim_{n \to \infty} f'_n(x) = f'(x)$ for all $x \in \mathbb{R}$ except x = 0.
- 4. For each $k \in \mathbb{N}$ define

 $g_k : [-\pi, \pi] \to \mathbb{R}$ by $g_k(x) = (\sin(x))^2 (\cos(x))^{2k}$.

- a) Find $f: [-\pi, \pi] \to \mathbb{R}$ such that $\sum g_k \to f$ pointwise.
- b) Does $\sum g_k \to f$ uniformly?
- c) If we change the domain to $[\pi/4, 3\pi/4]$, does $\sum g_k \to f$ uniformly?
- 5. Define $f, g: \mathbb{R} \to \mathbb{R}$ by $f(x) = e^{\sin(x)}$ and $g(x) = \int_0^{x^2} f$. Find g'(x).
- 6. Let $a_n \in \mathbb{R}$ for all $n \in \mathbb{N}$ such that $\sum a_n 2^n$ converges. Prove that the sequence of functions $\sum a_n x^n$ converges uniformly on [-1, 1].

1) Define
$$F: (a_{j}b) \rightarrow R$$

 $F(x) = \int_{a}^{x} f(-g)$.
Then $F(q) = F(b) = Q$.
Since $f(-g)$ is continuous, by the
Provind. This part II
• F is cont. on $Eq_{j}b$?
• F is differentiable on $(q_{j}b)$
• $F'(x) = f(x) - g(x)$ for $x \in (q_{j}b)$.
By the MUT, there exists to $E(q_{j}b)$.
Such that
 $F'(x) = F(x) - g(x) = P(b) - P(c) = Q$.

Alternate Solution If $f(x) \ge g(x)$ for all $x \in [0,1]$ or $g(x) \ge f(x)$ for all $x \in [0,1]$ then $\int f - g = \int g - f = 0$ implies f(x) = g(x) for all $x \in [0,1]$ Since f - g is Continuous. If neither case holds, then there exists x_i such that $f(x_i) > g(x_i)$ and x_i such that $g(x_i) > f(x_i)$. Applying the interrediate value theorem to f - gthere exists x_i between x_i , x_i where $f(x_i) = g(x_i)$.

$$\int f'(x) = -\frac{1}{2} \frac{1}{(1-x)} \int f''(x) = -\frac{1}{2} \int \frac{1}{(1-x)} \int \frac{$$

 $= \left(\frac{\partial n}{\partial n} - 3\right) \left(\frac{\partial n}{\partial n} - 5\right) - \left(\frac{\partial}{\partial n}\right) \left(\frac{\partial}{\partial n}\right) - \frac{\partial}{\partial n} - \frac$

Taylor Series

$$-\frac{1}{2}X - \sum_{n=2}^{\infty} \frac{(2n-3)(2n-5)...(1)}{2^{n}n!} X^{n}$$

Let $X \in (-1, 0)$. By Taylor's Thm, there exists $Y \in (X, 0)$ such that $R_n(X) = \frac{f^{(n)}(y)}{n!} X^n$.

$$\begin{array}{rcl} Note & \text{that} \\ (dn-3)(dn-5)\dots(3)(l) &= & (dn-3)! \\ \hline & & (dn-3)!(dn-5)\dots(4)(d) \\ \end{array} \\ &= & \frac{(dn-3)!}{2^{n-1}(n-2)!(n-3)\dots(4)(l)} &= & \frac{(dn-3)!}{2^{n-2}(n-2)!} \\ \\ &= & \frac{(dn-3)!}{2^{n-2}(n-2)!(n-3)\dots(4)(l)} \\ \end{array} \\ &= & \frac{(dn-3)!}{2^{n-2}(n-2)!(n-2)!(n!)} \frac{\chi^{n}}{(l-y)^{2n-1}} \\ \\ &= & \frac{(dn-3)!}{2^{n-2}(n-2)!(n-2)!(n!)} \frac{\chi^{n}}{(l-y)^{2n-1}} \\ \\ &= & \frac{(dn-3)!}{2^{n-2}(n-2)!(n-2)!(n!)} \frac{\chi^{n}}{(l-y)^{2n-1}} \\ \\ &= & \frac{(dn-3)!}{2^{n-2}(n-2)!(n$$

3)
Let
$$f(x) = 0$$
 for all $x \in \mathbb{R}$.
 $f_n'(x) := \frac{1+nx^2-x(2nx)}{(1+nx^2)^2} = \frac{1-nx^2}{(1+nx^2)^2}$
 $f_n'(x) = 0$ exactly when $k = \frac{1}{\sqrt{n}}$.
Analycis of the sigh of f_n , f_n' choas for exhibit is an $\frac{1}{\sqrt{n}}$.
Analycis of the sigh of f_n , f_n' choas for exhibit $\frac{1}{\sqrt{n}}$ or $\frac{1}{\sqrt{n}}$ or

$$\begin{aligned} &(J)_{\alpha}) \quad \hat{I} f \quad x \in \{T_{y} - T_{y}o\}, \quad \sin(x) = 0, \\ & s \circ \{g_{K}(o) = 0 \\ o \text{ Mervise}, \ \left|(c_{s}(x)) \right| < 1, \quad S \circ \text{ The} \\ g(conolities \quad Services \quad \underbrace{fl(c_{s}(c_{s}))}_{K=0}^{K} = \underbrace{l}_{I-(c_{s}^{2}(x))} = \underbrace{l}_{Sin^{2}(s)} \\ & K = 0 \end{aligned}$$

and
$$\int g_{\kappa}(\sigma) \circ S_{in}^{2}(x) \int ((as^{2}(x))^{\kappa} = 1),$$

 $\kappa \circ \circ \kappa \circ \circ$

So
$$f(x) = \begin{cases} 0 & x \in \{\pi_j - \widehat{n}_j, o\} \\ 1 & x \notin \{\pi_j - \widehat{n}_j, o\} \end{cases}$$

C) For
$$x \in [\pi/4, \frac{3\pi}{4}]$$
 $|\cos(x)| \leq \frac{1}{52}$
So $|9\kappa(x)| \leq \frac{1}{5}\kappa$. Since $\sum_{n=1}^{\infty} converges$,
 $fk \in M$ test implies $\sum_{n=1}^{\infty} 9\kappa$ converges uniformly.

5) Define
$$F: R \rightarrow R$$
 by
 $F(y) = \int f$. Since f is continuous,
 F is differentiable and $F' = f$ by
 He foundamental thm. Let $U(x) = x^{2}$.
 $T en \quad g = F \circ U \quad so$
 $g'(x) = F'(u(x)) U'(x) = e^{Sin(x^{2})}(2x)$.

6) Let R be the radius of convergence of Sanx" If Red, Ten Eand does not converge. So RED. Since ILL, Sansh converses unitary on [-1].