Problem Set 3

Due: Feb. 23, 2005

QFT in $1 + 1$ dimensions: Perturbative String Theory

Problem 1. 2d sigma model with flat target spaces

In this problem, we will consider 2d sigma models on T^2, with flat target space X. The T^2 is defined as a quotient of the complex plane by

$$z \sim z + 2\pi \sim z + 2\pi \tau.$$

Here we will develop the path integral formulation to compare with the operator formulation discussed in class.

i. Consider the target space to be $X = R$. What is the sigma model action? Start by finding the metric on T^2.

ii. Compute the path integral as a function of τ. Does this agree with the results found in class in the operator formalism?

iii. Consider now $X = S^1$ of radius R. Compute the partition function. Show that this has a T-duality symmetry. (You may need Poisson resummation for comparisons, as in problem number 1 in problem set 1. Be careful regarding the zero modes, and how the measure changes with any changes of variables.) Note that all the R-dependence is in the classical part. Why is that?

iv. Generalize iii. to $X = T^n$ with metric

$$G_{I,J}dX^I dX^J$$

where $X^I \sim X^I + 1$, and $G_{I,J}$ is a constant, positive and non-degenerate symmetric matrix. Be careful regarding the measure.

v. *Turning on B-field.* Consider now turning on a flat anti-symmetric 2-form

$$B = \frac{1}{2} B_{ij} dX^i \wedge dX^j.$$
Compute the partition function in operator formalism (Be careful to correctly identify the momentum conjugate to X^I), and in the path integral formalism.

Do they agree?

Problem 2. T-duality another way

Consider a path integral on a fixed genus g Riemann surface Σ, with the target space $X = T^n$. Denote the partition function by $Z(\Sigma, G)$ where G denotes the flat metric on X.

i. By direct evaluation of the path integral, but without attempting to compute the determinants involved, show that the T-duality is a symmetry of the path integral, up to an overall factor involving the volume of X. This will allow you to determine the relative normalization of the path integrals relating the original and the dual theory, which I avoided in the class.

ii. In string perturbation theory (where one in addition integrates over the moduli space of Riemann surfaces), the genus g surface is weighted by a factor λ^{2g-2} where λ denotes the string coupling constant. Show that the overall factor found in part i.) can be incorporated in the change of string coupling.

Problem 3. Gauge theory in 0 + 1 dimension

Consider a $U(1)$ gauge field A, i.e. a connection on a line bundle, on a circle of circumference β. Consider the action

$$S = i \alpha \oint_{S^1} A$$

i. Show that $exp(-S)$ is gauge invariant, i.e. that it does not change under

$$A \rightarrow A + g^{-1}dg$$

where $g : S^1 \rightarrow U(1)$, only if α is an integer k

ii. Show that the above action does not depend on β, in other words, it does not depend on the metric on S^1. This is a simple example of a topological field theory,

iii. Compute the path integral

$$Z = \int DA \exp(-S).$$