Introduction to Stochastic Analysis

Christopher W. Miller

Department of Mathematics University of California, Berkeley

February 12, 2014

Background and Motivation

Consider the ordinary differential equation:

$$\begin{cases} X'(t) = \mu (X(t), t) \\ X(0) = x_0, \end{cases}$$

which defines a trajectory $x : [0, \infty) \to \mathbb{R}^n$.

< A > < 3

Background and Motivation

In practice, solutions often display noise. We may want to model in the form:

$$\frac{dX}{dt} = \mu\left(X(t), t\right) + \sigma\left(X(t), t\right) \cdot \eta_t,$$

with η_t satisfying, at least approximately,

- η_{t_1} and η_{t_2} are independent when $t_1 \neq t_2$,
- $\{\eta_t\}$ is stationary, i.e. distribution is translation invariant,

•
$$\mathbb{E}\left[\eta_t\right] = 0$$
 for all t .

Background and Motivation

In practice, solutions often display noise. We may want to model in the form:

$$\frac{dX}{dt} = \mu\left(X(t), t\right) + \sigma\left(X(t), t\right) \cdot \eta_t,$$

with η_t satisfying, at least approximately,

- η_{t_1} and η_{t_2} are independent when $t_1 \neq t_2$,
- $\{\eta_t\}$ is stationary, i.e. distribution is translation invariant,

•
$$\mathbb{E}\left[\eta_t\right] = 0$$
 for all t

It turns out no reasonable stochastic process exists satisfying these.

Background and Motivation

Re-interpret as an integral equation:

$$X(t) = X(0) + \int_0^t \mu\left(X(s), s\right) \, ds + \int_0^t \sigma\left(X(s), s\right) \, dW_s.$$

< 4 ₽ > < 2 >

æ

_∢ ≣ ≯

Background and Motivation

Re-interpret as an integral equation:

$$X(t) = X(0) + \int_0^t \mu(X(s), s) \, ds + \int_0^t \sigma(X(s), s) \, dW_s.$$

Goals of this talk:

- Motivate a definition of the stochastic integral,
- Explore the properties of Brownian motion,
- Highlight major applications of stochastic analysis to PDE and control theory.

Background and Motivation

Re-interpret as an integral equation:

$$X(t) = X(0) + \int_0^t \mu(X(s), s) \, ds + \int_0^t \sigma(X(s), s) \, dW_s.$$

Goals of this talk:

- Motivate a definition of the stochastic integral,
- Explore the properties of Brownian motion,
- Highlight major applications of stochastic analysis to PDE and control theory.

References:

- "An Intro. to Stochastic Differential Equations", L.C. Evans
- "Brownian Motion and Stoch. Calculus", Karatzas and Shreve

Table of contents

1 Overview of Probability

- Probability Spaces
- Random Variables
- Stochastic Processes

2 Stochastic Analysis

- Brownian Motion
- Stochastic Integration
- Ito's Formula

3 Major Applications

- Martingale Representation Theorem
- Feynman-Kac Formula
- Hamilton-Jacobi-Bellman Equation

Probability Spaces Random Variables Stochastic Processes

Probability Spaces

We want to define a probability space (Ω, \mathcal{F}, P) to capture the formal notions:

- Ω is a set of "outcomes"
- \mathcal{F} is a collection of "events"
- P measures the likelihood of different "events".

・ロト ・回ト ・ヨト

Probability Spaces Random Variables Stochastic Processes

Probability Spaces

We want to define a probability space (Ω, \mathcal{F}, P) to capture the formal notions:

- Ω is a set of "outcomes"
- \mathcal{F} is a collection of "events"
- P measures the likelihood of different "events".

Definition (σ -algebra)

If Ω is a given set, then a σ -algebra \mathcal{F} on Ω is a collection \mathcal{F} of subsets on Ω with the following properties:

$$\bullet \ \emptyset \in \mathcal{F}$$

Overview of Probability

Stochastic Analysis Major Applications Conclusion Probability Spaces Random Variables Stochastic Processes

Probability Spaces

Definition (Probability measure)

Given a pair (Ω, \mathcal{F}) , then a probability measure P is a function $P : \mathcal{F} \to [0, 1]$ such that:

1
$$P(\emptyset) = 0, P(\Omega) = 1$$

2 If $A_1, A_2, \ldots \in \mathcal{F}$ are pairwise disjoint, then

$$P\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right).$$

We call a triple (Ω, \mathcal{F}, P) a probability space.

Probability Spaces Random Variables Stochastic Processes

Random Variables

Definition (Random variable)

Let (Ω, \mathcal{F}, P) be a probability space. A function $X : \Omega \to \mathbb{R}^n$ is called a random variable if for each $B \in \mathcal{B}$, we have

 $X^{-1}(B) \in \mathcal{F}.$

Equivalently, we say X is \mathcal{F} -measurable.

Probability Spaces Random Variables Stochastic Processes

Random Variables

Definition (Random variable)

Let (Ω, \mathcal{F}, P) be a probability space. A function $X : \Omega \to \mathbb{R}^n$ is called a random variable if for each $B \in \mathcal{B}$, we have

 $X^{-1}(B) \in \mathcal{F}.$

Equivalently, we say X is \mathcal{F} -measurable.

Proposition

Let $X : \Omega \to \mathbb{R}^n$ be a random variable. Then

```
\sigma(X) = \{X^{-1}(B) | B \in \mathcal{B}\}
```

is a σ -algebra, called the σ -algebra generated by X.

Overview of Probability

Stochastic Analysis Major Applications Conclusion Probability Spaces Random Variables Stochastic Processes

Random Variables

Proposition

Let $X : \Omega \to \mathbb{R}^n$ be a random variable on a probability space (Ω, \mathcal{F}, P) . Then

$$\mu_X(B) = P\left[X^{-1}(B)\right]$$

for each $B \in \mathcal{B}$ is a measure on \mathbb{R}^n called the distribution of X.

イロト イヨト イヨト イヨト

Overview of Probability

Stochastic Analysis Major Applications Conclusion

Probability Spaces Random Variables Stochastic Processes

Random Variables

Proposition

Let $X : \Omega \to \mathbb{R}^n$ be a random variable on a probability space (Ω, \mathcal{F}, P) . Then

$$\mu_X(B) = P\left[X^{-1}(B)\right]$$

for each $B \in \mathcal{B}$ is a measure on \mathbb{R}^n called the distribution of X.

Definition (Expectation)

Let $X : \Omega \to \mathbb{R}^n$ be a random variable and $f : \mathbb{R}^n \to \mathbb{R}$ be Borel measurable. Then the expectation of f(X) may be defined as:

$$\mathbb{E}\left[f(X)\right] = \int_{\mathbb{R}^n} f(x) \, d\mu_X(x).$$

イロト イヨト イヨト イヨト

Probability Spaces Random Variables Stochastic Processes

Random Variables

Definition (Conditional Expectation)

Let X be \mathcal{F} -measurable and $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. Then a conditional expectation of X given \mathcal{G} is any \mathcal{G} -measurable function $\mathbb{E}[X|\mathcal{G}]$ such that

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right] \, 1_{A}\right] = \mathbb{E}\left[X \, 1_{A}\right]$$

for any $A \in \mathcal{G}$.

Probability Spaces Random Variables Stochastic Processes

Random Variables

Definition (Conditional Expectation)

Let X be \mathcal{F} -measurable and $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. Then a conditional expectation of X given \mathcal{G} is any \mathcal{G} -measurable function $\mathbb{E}[X|\mathcal{G}]$ such that

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right] \, \mathbf{1}_{A}\right] = \mathbb{E}\left[X \, \mathbf{1}_{A}\right]$$

for any $A \in \mathcal{G}$.

Proposition (Some Properties of Conditional Expectation)

- Linearity in $\mathbb{E}\left[\cdot \mid \mathcal{G}\right]$.
- If X is G-measurable, then E [XY | G] = X E [Y | G] a.s. as long as XY is integrable.
- If $\mathcal{H} \subset \mathcal{G}$, then $\mathbb{E}[X \mid \mathcal{H}] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}]$ a.s.

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Definition (Stochastic process)

- A collection {X_t : t ∈ T} of random variables is called a stochastic process.
- For each ω ∈ Ω, the mapping t → X(t, ω) is the corresponding sample path.

Examples:

- Simple random walk
- Markov chain

• • • •

・ロト ・回ト ・ヨト

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

Let X_n be a stochastic process. The sequence of σ -algebras defined by:

$$\mathcal{F}_n = \sigma \left(X_0, X_1, \ldots, X_n \right).$$

is an increasing sequence. We call such an increasing sequence of σ -algebras a filtration.

・ロト ・回ト ・ヨト

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

Let X_n be a stochastic process. The sequence of σ -algebras defined by:

$$\mathcal{F}_n = \sigma \left(X_0, X_1, \ldots, X_n \right).$$

is an increasing sequence. We call such an increasing sequence of σ -algebras a filtration.

Definition (Martingale)

Let $\{X_n\}$ be a stochastic process such that each X_n is \mathcal{F}_n -measurable. We say X_n is a martingale if

•
$$X_n \in L^1(\Omega, \mathcal{F}, P)$$
 for all $n \ge 0$

•
$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$$
 for all $n \ge 0$.

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

The simple random walk is a martingale if and only if $p = \frac{1}{2}$.

<ロ> (日) (日) (日) (日) (日)

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

The simple random walk is a martingale if and only if $p = \frac{1}{2}$.

Proof.

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

The simple random walk is a martingale if and only if $p = \frac{1}{2}$.

Proof.

$$\mathbb{E}\left[|X_n|\right] \leq \sum_{k=1}^n \mathbb{E}\left[|\xi_k|\right] = n$$

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

The simple random walk is a martingale if and only if $p = \frac{1}{2}$.

Proof.

$$\mathbb{E}[|X_n|] \leq \sum_{k=1}^n \mathbb{E}[|\xi_k|] = n$$
$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n + \xi_{n+1}|\mathcal{F}_n]$$

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

The simple random walk is a martingale if and only if $p = \frac{1}{2}$.

Proof.

$$\mathbb{E}[|X_n|] \leq \sum_{k=1}^n \mathbb{E}[|\xi_k|] = n$$

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n + \xi_{n+1}|\mathcal{F}_n]$$

$$= X_n + \mathbb{E}[\xi_{n+1}|\mathcal{F}_n] = X_n + 2p - 1$$

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Definition (Discrete-time stochastic integration)

Let $\{X_n\}_{n\geq 0}$ and $\{A_n\}_{n\geq 0}$ be two stochastic processes. We define the (discrete-time) stochastic integral of A with respect to X as the process:

$$I_n = \sum_{k=1}^n A_k (X_k - X_{k-1}).$$

Example: Betting strategy...

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Definition (Discrete-time stochastic integration)

Let $\{X_n\}_{n\geq 0}$ and $\{A_n\}_{n\geq 0}$ be two stochastic processes. We define the (discrete-time) stochastic integral of A with respect to X as the process:

$$I_n = \sum_{k=1}^n A_k (X_k - X_{k-1}).$$

Example: Betting strategy...

Proposition

If $\{X_n\}$ is a martingale and $\{A_n\}$ is a "predictable", $L^{\infty}(\Omega)$ process, then I_n is a martingale.

<ロ> <同> <同> < 同> < 同> < 同><<

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

If $\{X_n\}$ is a martingale and $\{A_n\}$ is a predictable, $L^{\infty}(\Omega)$ process, then I_n is a martingale.

<ロ> <同> <同> <同> < 同>

- ∢ ≣ ▶

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

If $\{X_n\}$ is a martingale and $\{A_n\}$ is a predictable, $L^{\infty}(\Omega)$ process, then I_n is a martingale.

Proof.

Note, each I_n is \mathcal{F}_n -measurable. Holder's inequality shows $I_n \in L^1(\Omega)$. We check the last condition using predictability of A:

$$\mathbb{E}\left[I_{n+1}|\mathcal{F}_n\right] = \mathbb{E}\left[I_n + A_{n+1}\left(X_{n+1} - X_n\right)|\mathcal{F}_n\right]$$

= $I_n + A_{n+1}\mathbb{E}\left[X_{n+1} - X_n|\mathcal{F}_n\right] = I_n$

<ロ> <同> <同> <三>

Probability Spaces Random Variables Stochastic Processes

Stochastic Processes

Proposition

If $\{X_n\}$ is a martingale and $\{A_n\}$ is a predictable, $L^{\infty}(\Omega)$ process, then I_n is a martingale.

Proof.

Note, each I_n is \mathcal{F}_n -measurable. Holder's inequality shows $I_n \in L^1(\Omega)$. We check the last condition using predictability of A:

$$\mathbb{E}\left[I_{n+1}|\mathcal{F}_n\right] = \mathbb{E}\left[I_n + A_{n+1}\left(X_{n+1} - X_n\right)|\mathcal{F}_n\right]$$
$$= I_n + A_{n+1}\mathbb{E}\left[X_{n+1} - X_n|\mathcal{F}_n\right] = I_n$$

Interpretation: Impossible to make money betting on a martingale.

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

• What would a continuous-time version of a simple random walk look like?

<ロ> (日) (日) (日) (日) (日)

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

- What would a continuous-time version of a simple random walk look like?
- Can we make time-steps smaller and still keep key properties of random walk, e.g. martingale, Markov, independent increments...?

<ロ> <同> <同> < 同> < 同> < 同><<

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

- What would a continuous-time version of a simple random walk look like?
- Can we make time-steps smaller and still keep key properties of random walk, e.g. martingale, Markov, independent increments...?
- Can we extend the fact that for large k, $X_{n+k} X_n \approx N(0, k)$?

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

- What would a continuous-time version of a simple random walk look like?
- Can we make time-steps smaller and still keep key properties of random walk, e.g. martingale, Markov, independent increments...?
- Can we extend the fact that for large k, $X_{n+k} X_n \approx N(0, k)$?

Definition (Brownian Motion)

A real-valued stochastic process W is called a Brownian motion if:

- $W_0 = 0$ almost surely,
- for all times $0 < t_1 < t_2 < \cdots < t_n$, the random variables $W_{t_1}, W_{t_2} W_{t_1}, \ldots, W_{t_n} W_{t_{n-1}}$ are independent.

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

Theorem (Sketch of Existence)

Let $\{w_k\}$ be an orthonormal basis on $L^2(0,1)$. Let $\{\xi_k\}$ be a sequence of independent, N(0,1) random variables. The sum

$$W_t(\omega) = \sum_{k=0}^{\infty} \xi_k(\omega) \int_0^t w_k(s) \, ds$$

converges uniformly in t almost surely. W_t is a Brownian motion for $0 \le t \le 1$, and furthermore, $t \mapsto W_t(\omega)$ is continuous almost surely.

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

Theorem (Sketch of Existence)

Let $\{w_k\}$ be an orthonormal basis on $L^2(0,1)$. Let $\{\xi_k\}$ be a sequence of independent, N(0,1) random variables. The sum

$$W_t(\omega) = \sum_{k=0}^{\infty} \xi_k(\omega) \int_0^t w_k(s) \, ds$$

converges uniformly in t almost surely. W_t is a Brownian motion for $0 \le t \le 1$, and furthermore, $t \mapsto W_t(\omega)$ is continuous almost surely.

Proof

We ignore all technical issues of convergence and just check the joint distributions of increments.

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

$$\mathbb{E}\left[W_{t_{m+1}}-W_{t_m}\right]=\sum_{k=1}^{\infty}\int_{t_m}^{t_{m+1}}w_k\,ds\,\mathbb{E}\left[\xi_k\right]=0.$$

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

$$\mathbb{E}\left[W_{t_{m+1}}-W_{t_m}\right]=\sum_{k=1}^{\infty}\int_{t_m}^{t_{m+1}}w_k\,ds\,\mathbb{E}\left[\xi_k\right]=0.$$

$$\mathbb{E}\left[\Delta W_{t_m} \Delta W_{t_n}\right] = \sum_{k,l} \int_{t_m}^{t_{m+1}} w_k \, ds \int_{t_n}^{t_{n+1}} w_l \, ds \mathbb{E}\left[\xi_k \xi_l\right]$$

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

$$\mathbb{E}\left[W_{t_{m+1}}-W_{t_m}\right]=\sum_{k=1}^{\infty}\int_{t_m}^{t_{m+1}}w_k\,ds\,\mathbb{E}\left[\xi_k\right]=0.$$

$$\mathbb{E}\left[\Delta W_{t_m} \Delta W_{t_n}\right] = \sum_{k,l} \int_{t_m}^{t_{m+1}} w_k \, ds \int_{t_n}^{t_{n+1}} w_l \, ds \mathbb{E}\left[\xi_k \xi_l\right]$$
$$= \sum_{k=0}^{\infty} \int_{t_m}^{t_{m+1}} w_k \, ds \int_{t_n}^{t_{n+1}} w_k \, ds$$

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

$$\mathbb{E}\left[W_{t_{m+1}}-W_{t_m}\right]=\sum_{k=1}^{\infty}\int_{t_m}^{t_{m+1}}w_k\,ds\,\mathbb{E}\left[\xi_k\right]=0.$$

$$\mathbb{E} \left[\Delta W_{t_m} \Delta W_{t_n} \right] = \sum_{k,l} \int_{t_m}^{t_{m+1}} w_k \, ds \int_{t_n}^{t_{n+1}} w_l \, ds \mathbb{E} \left[\xi_k \xi_l \right] \\ = \sum_{k=0}^{\infty} \int_{t_m}^{t_{m+1}} w_k \, ds \int_{t_n}^{t_{n+1}} w_k \, ds \\ = \int_0^1 \mathbf{1}_{[t_m, t_{m+1}]} \, \mathbf{1}_{[t_n, t_{n+1}]} \, ds = \Delta t_m \, \delta_n^m.$$

Brownian Motion Stochastic Integration Ito's Formula

Brownian Motion

メロト メポト メヨト メヨト

Brownian Motion Stochastic Integration Ito's Formula

Stochastic Integration

We would like to develop a theory of stochastic differential equations of the form:

$$\begin{cases} dX = \mu(X, t) dt + \sigma(X, t) dW_t \\ X(0) = X_0. \end{cases}$$

イロト イヨト イヨト イヨト

Brownian Motion Stochastic Integration Ito's Formula

Stochastic Integration

We would like to develop a theory of stochastic differential equations of the form:

$$\begin{cases} dX = \mu(X, t) dt + \sigma(X, t) dW_t \\ X(0) = X_0. \end{cases}$$

We interpret this equation in integral form:

$$X(t) = X_0 + \int_0^t \mu(X,s) \, ds + \int_0^t \sigma(X,s) \, dW_s$$

and attempt to define the integral on the right-hand-side.

イロト イポト イヨト イヨ

Brownian Motion Stochastic Integration Ito's Formula

Stochastic Integration

Definition (Step Process)

A stochastic process $\{A_t\}_{t \in [0,T]}$ is called a step process if there exists a partition $0 = t_0 < t_1 < \cdots < t_n = T$ such that

 $A_t \equiv A_k$ for $t_k \leq t < t_{k+1}$.

Brownian Motion Stochastic Integration Ito's Formula

Stochastic Integration

Definition (Step Process)

A stochastic process $\{A_t\}_{t \in [0,T]}$ is called a step process if there exists a partition $0 = t_0 < t_1 < \cdots < t_n = T$ such that

$$A_t \equiv A_k$$
 for $t_k \leq t < t_{k+1}$.

Definition (Ito Integral for Step Processes)

Let $\{A_t\}_{t \in [0,T]}$ be a step process, as above. We define an Ito stochastic integral of A as

$$\int_0^T A \, dW_t = \sum_{k=0}^{n-1} A_k \left(W_{t_{k+1}} - W_{t_k} \right).$$

Brownian Motion Stochastic Integration Ito's Formula

Stochastic Integration

Proposition (Approximation by Step Processes)

Let $A \in L^2(\Omega; L^2(0, T))$. Then there exists a sequence of bounded step processes A_n converging to A in $L^2(\Omega; L^2(0, T))$. Furthermore, we have convergence

$$\int_0^T A_n \, dW_t \stackrel{L^2(\Omega)}{\to} \int_0^T A \, dW_t.$$

Brownian Motion Stochastic Integration Ito's Formula

Stochastic Integration

Proposition (Approximation by Step Processes)

Let $A \in L^2(\Omega; L^2(0, T))$. Then there exists a sequence of bounded step processes A_n converging to A in $L^2(\Omega; L^2(0, T))$. Furthermore, we have convergence

$$\int_0^T A_n \, dW_t \stackrel{L^2(\Omega)}{\to} \int_0^T A \, dW_t.$$

Remark: There are myriad measurability issues we are glossing over. Typically, we ask that $A : \Omega \times [0, T] \rightarrow \mathbb{R}$ is:

- Square-integrable
- "Progressively measurable"
- "Adapted" + continuous, or "predictable"

In this case, the Ito integral of A is a martingale.

Brownian Motion Stochastic Integration Ito's Formula

Ito's Formula

How do we compute Ito integrals in practice? Ito's formula.

イロン イヨン イヨン イヨン

Brownian Motion Stochastic Integration Ito's Formula

Ito's Formula

How do we compute Ito integrals in practice? Ito's formula.

Theorem (Ito's Formula)

Suppose that X_t is a stochastic process satisfying the SDE

$$dX_t = \mu(X_t, t) dt + \sigma(X_t, t) dW_t,$$

for "nice" μ and σ . Let $f : \mathbb{R} \times [0, T] \to \mathbb{R}$ be C^2 . Set $Y_t = f(X_t, t)$. Then Y_t satisfies the SDE

$$dY_t = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial x}\mu + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}\sigma^2\right) dt + \frac{\partial f}{\partial x}\sigma dW_t$$
$$= \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}\sigma^2 dt.$$

イロト イヨト イヨト イヨト

Brownian Motion Stochastic Integration Ito's Formula

Ito's Formula

Lemma

- $d(tW_t) = W_t dt + t dW_t$

・ロン ・回と ・ヨン・

Brownian Motion Stochastic Integration Ito's Formula

Ito's Formula

Lemma

$$d \left(W_t^2 \right) = dt + 2W_t \, dW_t$$

Proof.

Let
$$0 = t_0 < t_1 < \cdots < t_n = t$$
. Approximate the Ito integral:

$$\sum_{k=0}^{n-1} 2W_{t_k} \left(W_{t_{k+1}} - W_{t_k} \right) = W_{t_n}^2 - \sum_{k=0}^n \left(W_{t_{k+1}} - W_{t_k} \right)^2 \stackrel{P}{\to} W_t^2 - t.$$

Similar for (2).

・ロ・ ・ 日・ ・ 日・ ・ 日・

Brownian Motion Stochastic Integration Ito's Formula

Ito's Formula

Lemma (Ito Product Rule)

Let X_t and Y_t satisfy:

$$\begin{cases} dX_t = \mu_1 dt + \sigma_1 dW_t \\ dY_t = \mu_2 dt + \sigma_2 dW_t. \end{cases}$$

Then

$$d(X_tY_t) = Y_t dX_t + X_t dY_t + \sigma_1\sigma_2 dt.$$

・ロト ・回ト ・ヨト ・ヨト

Brownian Motion Stochastic Integration Ito's Formula

Ito's Formula

Lemma (Ito Product Rule)

Let X_t and Y_t satisfy:

$$\begin{cases} dX_t = \mu_1 dt + \sigma_1 dW_t \\ dY_t = \mu_2 dt + \sigma_2 dW_t. \end{cases}$$

Then

$$d(X_tY_t) = Y_t dX_t + X_t dY_t + \sigma_1\sigma_2 dt.$$

Proof.

Approximate by step processes. Use previous lemma. Be careful about convergence.

イロン イヨン イヨン イヨン

Brownian Motion Stochastic Integration Ito's Formula

Ito's Formula

Theorem (Ito's Formula)

Suppose that X_t is a stochastic process satisfying the SDE

$$dX_t = \mu(X_t, t) \, dt + \sigma(X_t, t) \, dW_t$$

for "nice" μ and σ . Let $f : \mathbb{R} \times [0, T] \to \mathbb{R}$ be C^2 . Set $Y_t = f(X_t, t)$. Then Y_t satisfies the SDE

$$dY_t = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \sigma^2 dt$$

Brownian Motion Stochastic Integration Ito's Formula

Ito's Formula

Theorem (Ito's Formula)

Suppose that X_t is a stochastic process satisfying the SDE

$$dX_t = \mu(X_t, t) dt + \sigma(X_t, t) dW_t$$

for "nice" μ and σ . Let $f : \mathbb{R} \times [0, T] \to \mathbb{R}$ be C^2 . Set $Y_t = f(X_t, t)$. Then Y_t satisfies the SDE

$$dY_t = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \sigma^2 dt.$$

Proof.

Apply lemmas inductively to compute $d(t^n X_t^m)$. Approximate f, $\frac{\partial f}{\partial x}$, $\frac{\partial^2 f}{\partial x^2}$, and $\frac{\partial f}{\partial t}$ by polynomials. Be careful about convergence.

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Martingale Representation Theorem

Theorem

Let W_t be a Brownian motion with filtration \mathcal{F}_t . Let M_t be a continuous, square-integrable martingale with respect to \mathcal{F}_t , along with a few other technical, but reasonable, conditions. Then there exists a predictable process ϕ_t such that:

$$M_t = M_0 + \int_0^t \phi_s \, dW_s.$$

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Martingale Representation Theorem

Theorem

Let W_t be a Brownian motion with filtration \mathcal{F}_t . Let M_t be a continuous, square-integrable martingale with respect to \mathcal{F}_t , along with a few other technical, but reasonable, conditions. Then there exists a predictable process ϕ_t such that:

$$M_t = M_0 + \int_0^t \phi_s \, dW_s.$$

Significance:

• Brownian motion is the archetypal continuous, square-integrable martingale.

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Feynman-Kac Formula

Theorem

Consider the parabolic PDE on $\mathbb{R} \times [0, T]$:

$$rac{\partial u}{\partial t} + \mu(x,t)rac{\partial u}{\partial x} + rac{1}{2}\sigma^2(x,t)rac{\partial^2 u}{\partial x^2} - V(x,t)u + f(x,t) = 0,$$

with the terminal condition $u(x, T) = \Psi(x)$. Then:

$$u(x,t) = \mathbb{E}\left[\int_{t}^{T} e^{-\int_{t}^{r} V(X_{\tau},\tau) d\tau} f(X_{r},r) dr + e^{-\int_{t}^{T} V(X_{\tau},\tau) d\tau} \Psi(X_{T}) \mid X_{t} = x\right]$$

where X_t is a solution to the SDE

$$dX_t = \mu(X_t, t) dt + \sigma(X_t, t) dW_t$$

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Feynman-Kac Formula

Proof.

Define a stochastic process:

$$Y_{r} = e^{-\int_{t}^{r} V(X_{\tau},\tau) d\tau} u(X_{r},r) + \int_{t}^{r} e^{-\int_{t}^{s} V(X_{\tau},\tau) d\tau} f(X_{s},s) ds.$$

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Feynman-Kac Formula

Proof.

Define a stochastic process:

$$Y_{r} = e^{-\int_{t}^{r} V(X_{\tau},\tau) \, d\tau} u(X_{r},r) + \int_{t}^{r} e^{-\int_{t}^{s} V(X_{\tau},\tau) \, d\tau} f(X_{s},s) \, ds.$$

Apply Ito's formula, use the PDE to cancel a lot of terms, and get:

$$Y_{T} = Y_{t} + \int_{t}^{T} e^{-\int_{t}^{s} V(X_{\tau},\tau) d\tau} \sigma(X_{s},s) \frac{\partial u}{\partial x} dW_{s}.$$

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Feynman-Kac Formula

Proof.

Define a stochastic process:

$$Y_{r} = e^{-\int_{t}^{r} V(X_{\tau},\tau) \, d\tau} u(X_{r},r) + \int_{t}^{r} e^{-\int_{t}^{s} V(X_{\tau},\tau) \, d\tau} f(X_{s},s) \, ds.$$

Apply Ito's formula, use the PDE to cancel a lot of terms, and get:

$$Y_{T} = Y_{t} + \int_{t}^{T} e^{-\int_{t}^{s} V(X_{\tau},\tau) d\tau} \sigma(X_{s},s) \frac{\partial u}{\partial x} dW_{s}.$$

Taking conditional expectations on each side and using the martingale-property of Ito integrals, we get:

$$u(x,t) = \mathbb{E}\left[Y_t \mid X_t = x\right] = \mathbb{E}\left[Y_T \mid X_t = x\right].$$

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation

Consider a process X which is driven by a control α_t via the SDE:

$$dX_t = \mu(X_t, \alpha_t, t) dt + \sigma(X_t, \alpha_t, t) dW_t.$$

Consider the optimization problem:

$$V(x,t) = \max_{\alpha(\cdot)} \left\{ \mathbb{E}\left[\int_t^T r(X_s, \alpha_s, s) \, ds + g(X_T) \mid X_t = x \right] \right\}.$$

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation

Consider a process X which is driven by a control α_t via the SDE:

$$dX_t = \mu(X_t, \alpha_t, t) dt + \sigma(X_t, \alpha_t, t) dW_t.$$

Consider the optimization problem:

$$V(x,t) = \max_{\alpha(\cdot)} \left\{ \mathbb{E}\left[\int_t^T r(X_s, \alpha_s, s) \, ds + g(X_T) \mid X_t = x \right] \right\}.$$

Theorem (HJB Equation)

Assuming μ , σ , r, and g are all "nice", V is a solution (in a weak sense) to the fully non-linear PDE:

$$\begin{cases} 0 = \frac{\partial V}{\partial t} + \sup_{\alpha} \left\{ r(x, \alpha, t) + \mu(x, \alpha, t) \frac{\partial V}{\partial x} + \frac{1}{2} \sigma(x, \alpha, t)^2 \frac{\partial^2 V}{\partial x^2} \right\} \\ V(x, T) = g(x) \end{cases}$$

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation

Proof

To illustrate the main idea, we proceed formally, assuming that a optimal control α_t^* exists and everything in sight is smooth.

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation

Proof

To illustrate the main idea, we proceed formally, assuming that a optimal control α_t^* exists and everything in sight is smooth. For any $\epsilon > 0$, for sufficiently small 0 < h < T - t, we have for all $\alpha \in \mathbb{R}$:

$$V(x,t) + \epsilon \geq \mathbb{E}\left[\int_{t}^{t+h} r(X_{s},\alpha,s) \, ds + V(X_{t+h},t+h) \mid X_{t} = x\right]$$
$$V(x,t) - \epsilon \leq \mathbb{E}\left[\int_{t}^{t+h} r(X_{s},\alpha_{t}^{*},s) \, ds + V(X_{t+h},t+h) \mid X_{t} = x\right]$$

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation

Then, we conclude:

$$2\epsilon \ge |V(x,t) - \sup_{\alpha} \left\{ \mathbb{E} \left[\int_{t}^{t+h} r(X_{s},\alpha,s) \, ds + V(X_{t+h},t+h) \mid X_{t} = x \right] \right\}$$

ヘロト 人間 とくほ とくほう

э

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation

Then, we conclude:

$$2\epsilon \geq |V(x,t) - \sup_{\alpha} \left\{ \mathbb{E} \left[\int_{t}^{t+h} r(X_{s}, \alpha, s) \, ds + V(X_{t+h}, t+h) \mid X_{t} = x \right] \right\}$$

Applying Ito's formula to the term inside the expectation, we see:

$$\int_{t}^{t+h} r(X_{s}, \alpha, s) \, ds + V(X_{t+h}, t+h)$$

$$= V(X_{t}, t) + \int_{t}^{t+h} \left(r + \frac{\partial V}{\partial t} + \mu \frac{\partial V}{\partial x} + \frac{1}{2} \sigma^{2} \frac{\partial^{2} V}{\partial x^{2}} \right) \, ds$$

$$+ \int_{t}^{t+h} \cdots \, dW_{s}.$$

・ロト ・日本 ・ヨト ・ヨト

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation

Now, using the martingale property of Ito integrals, we obtain:

$$2\epsilon \geq |\sup_{\alpha} \left\{ \mathbb{E}\left[\int_{t}^{t+h} \left(r + \frac{\partial V}{\partial t} + \mu \frac{\partial V}{\partial x} + \frac{1}{2} \sigma^{2} \frac{\partial^{2} V}{\partial x^{2}} \right) ds \mid X_{t} = x \right] \right\}|$$

・ロト ・回ト ・ヨト

Martingale Representation Theorem Feynman-Kac Formula Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation

Now, using the martingale property of Ito integrals, we obtain:

$$2\epsilon \geq |\sup_{\alpha} \left\{ \mathbb{E}\left[\int_{t}^{t+h} \left(r + \frac{\partial V}{\partial t} + \mu \frac{\partial V}{\partial x} + \frac{1}{2} \sigma^{2} \frac{\partial^{2} V}{\partial x^{2}} \right) ds \mid X_{t} = x \right] \right\}|$$

Then taking $\epsilon, h \rightarrow 0$, we obtain:

$$0 = \frac{\partial V}{\partial t} + \sup_{\alpha} \left\{ r(x, \alpha, t) + \mu(x, \alpha, t) \frac{\partial V}{\partial x} + \frac{1}{2} \sigma(x, \alpha, t)^2 \frac{\partial^2 V}{\partial x^2} \right\}.$$

<ロ> (四) (四) (三) (三)

Conclusion

Stochastic analysis provides a mathematical framework for uncertainty quantification and local descriptions of global stochastic phenomena.

- Deep connections to elliptic and parabolic PDE,
- Characterizes large classes of continuous-time stochastic processes,
- Fundamental tools for the working analyst.

< 🗇 > < 🖃 >

◆□ > ◆□ > ◆臣 > ◆臣 > ○