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Background and Motivation

Consider the ordinary differential equation:{
X ′(t) = µ (X (t), t)

X (0) = x0,

which defines a trajectory x : [0,∞)→ Rn.
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Background and Motivation

In practice, solutions often display noise. We may want to model in
the form:

dX

dt
= µ (X (t), t) + σ (X (t), t) · ηt ,

with ηt satisfying, at least approximately,

ηt1 and ηt2 are independent when t1 6= t2,

{ηt} is stationary, i.e. distribution is translation invariant,

E [ηt ] = 0 for all t.

It turns out no reasonable stochastic process exists satisfying these.
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Background and Motivation

Re-interpret as an integral equation:

X (t) = X (0) +

∫ t

0
µ (X (s), s) ds +

∫ t

0
σ (X (s), s) dWs .

Goals of this talk:

Motivate a definition of the stochastic integral,

Explore the properties of Brownian motion,

Highlight major applications of stochastic analysis to PDE
and control theory.

References:

”An Intro. to Stochastic Differential Equations”, L.C. Evans

”Brownian Motion and Stoch. Calculus”, Karatzas and Shreve
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Probability Spaces

We want to define a probability space (Ω,F ,P) to capture the
formal notions:

Ω is a set of ”outcomes”

F is a collection of ”events”

P measures the likelihood of different ”events”.

Definition (σ-algebra)

If Ω is a given set, then a σ-algebra F on Ω is a collection F of
subsets on Ω with the following properties:

1 ∅ ∈ F
2 A ∈ F =⇒ Ac ∈ F
3 A1,A2, . . . ∈ F =⇒

⋃∞
i=1 Ai ∈ F .
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Probability Spaces

Definition (Probability measure)

Given a pair (Ω,F), then a probability measure P is a function
P : F → [0, 1] such that:

1 P (∅) = 0, P (Ω) = 1

2 If A1,A2, . . . ∈ F are pairwise disjoint, then

P (∪∞i=1Ai ) =
∞∑
i=1

P (Ai ) .

We call a triple (Ω,F ,P) a probability space.
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Random Variables

Definition (Random variable)

Let (Ω,F ,P) be a probability space. A function X : Ω→ Rn is
called a random variable if for each B ∈ B, we have

X−1(B) ∈ F .

Equivalently, we say X is F-measurable.

Proposition

Let X : Ω→ Rn be a random variable. Then

σ(X ) = {X−1(B)|B ∈ B}

is a σ-algebra, called the σ-algebra generated by X .
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Random Variables

Proposition

Let X : Ω→ Rn be a random variable on a probability space
(Ω,F ,P). Then

µX (B) = P
[
X−1(B)

]
for each B ∈ B is a measure on Rn called the distribution of X .

Definition (Expectation)

Let X : Ω→ Rn be a random variable and f : Rn → R be Borel
measurable. Then the expectation of f (X ) may be defined as:

E [f (X )] =

∫
Rn

f (x) dµX (x).
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Random Variables

Definition (Conditional Expectation)

Let X be F-measurable and G ⊂ F be a sub-σ-algebra. Then a
conditional expectation of X given G is any G-measurable function
E [X |G] such that

E [E [X |G] 1A] = E [X 1A]

for any A ∈ G.

Proposition (Some Properties of Conditional Expectation)

Linearity in E [· | G].

If X is G-measurable, then E [XY | G] = X E [Y | G] a.s. as
long as XY is integrable.

If H ⊂ G, then E [X | H] = E [E [X | G] | H] a.s.
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Stochastic Processes

Definition (Stochastic process)

A collection {Xt : t ∈ T} of random variables is called a
stochastic process.

For each ω ∈ Ω, the mapping t 7→ X (t, ω) is the
corresponding sample path.

Examples:

Simple random walk

Markov chain

· · ·
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Stochastic Processes

Proposition

Let Xn be a stochastic process. The sequence of σ-algebras
defined by:

Fn = σ (X0,X1, . . . ,Xn) .

is an increasing sequence. We call such an increasing sequence of
σ-algebras a filtration.

Definition (Martingale)

Let {Xn} be a stochastic process such that each Xn is
Fn-measurable. We say Xn is a martingale if

Xn ∈ L1(Ω,F ,P) for all n ≥ 0

E [Xn+1|Fn] = Xn for all n ≥ 0.
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Stochastic Processes

Proposition

The simple random walk is a martingale if and only if p = 1
2 .

Proof.

Recall, a simple random walk is Xn =
∑n

k=1 ξk , where {ξn}n≥0 are
IID with P [ξn = 1] = 1− P [ξ = −1] = p ∈ (0, 1).

E [|Xn|] ≤
n∑

k=1

E [|ξk |] = n

E [Xn+1|Fn] = E [Xn + ξn+1|Fn]

= Xn + E [ξn+1|Fn] = Xn + 2p − 1.
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Stochastic Processes

Definition (Discrete-time stochastic integration)

Let {Xn}n≥0 and {An}n≥0 be two stochastic processes. We define
the (discrete-time) stochastic integral of A with respect to X as
the process:

In =
n∑

k=1

Ak (Xk − Xk−1) .

Example: Betting strategy...

Proposition

If {Xn} is a martingale and {An} is a ”predictable”, L∞(Ω)
process, then In is a martingale.
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Stochastic Processes

Proposition

If {Xn} is a martingale and {An} is a predictable, L∞(Ω) process,
then In is a martingale.

Proof.

Note, each In is Fn-measurable. Holder’s inequality shows
In ∈ L1(Ω). We check the last condition using predictability of A:

E [In+1|Fn] = E [In + An+1 (Xn+1 − Xn) |Fn]

= In + An+1E [Xn+1 − Xn|Fn] = In.

Interpretation: Impossible to make money betting on a martingale.
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Brownian Motion

What would a continuous-time version of a simple random
walk look like?

Can we make time-steps smaller and still keep key properties
of random walk, e.g. martingale, Markov, independent
increments...?

Can we extend the fact that for large k , Xn+k −Xn ≈ N(0, k)?

Definition (Brownian Motion)

A real-valued stochastic process W is called a Brownian motion if:

1 W0 = 0 almost surely,

2 Wt −Ws is N(0, t − s) for all t ≥ s ≥ 0,

3 for all times 0 < t1 < t2 < · · · < tn, the random variables
Wt1 , Wt2 −Wt1 , . . ., Wtn −Wtn−1 are independent.
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Brownian Motion

Theorem (Sketch of Existence)

Let {wk} be an orthonormal basis on L2(0, 1). Let {ξk} be a
sequence of independent, N(0, 1) random variables. The sum

Wt(ω) =
∞∑
k=0

ξk(ω)

∫ t

0
wk(s) ds

converges uniformly in t almost surely. Wt is a Brownian motion
for 0 ≤ t ≤ 1, and furthermore, t 7→Wt(ω) is continuous almost
surely.

Proof

We ignore all technical issues of convergence and just check the
joint distributions of increments.
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Brownian Motion

A sum of normal random variables is normal.

E
[
Wtm+1 −Wtm

]
=
∞∑
k=1

∫ tm+1

tm

wk ds E [ξk ] = 0.

E [∆Wtm ∆Wtn ] =
∑
k,l

∫ tm+1

tm

wk ds

∫ tn+1

tn

wl dsE [ξkξl ]

=
∞∑
k=0

∫ tm+1

tm

wk ds

∫ tn+1

tn

wk ds

=

∫ 1

0
1[tm,tm+1] 1[tn,tn+1] ds = ∆tm δ

m
n .
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Stochastic Integration

We would like to develop a theory of stochastic differential
equations of the form:{

dX = µ(X , t) dt + σ(X , t) dWt

X (0) = X0.

We interpret this equation in integral form:

X (t) = X0 +

∫ t

0
µ(X , s) ds +

∫ t

0
σ(X , s) dWs

and attempt to define the integral on the right-hand-side.
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Stochastic Integration

Definition (Step Process)

A stochastic process {At}t∈[0,T ] is called a step process if there
exists a partition 0 = t0 < t1 < · · · < tn = T such that

At ≡ Ak for tk ≤ t < tk+1.

Definition (Ito Integral for Step Processes)

Let {At}t∈[0,T ] be a step process, as above. We define an Ito
stochastic integral of A as∫ T

0
A dWt =

n−1∑
k=0

Ak

(
Wtk+1

−Wtk

)
.
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Proposition (Approximation by Step Processes)

Let A ∈ L2(Ω; L2(0,T )). Then there exists a sequence of bounded
step processes An converging to A in L2(Ω; L2(0,T )).
Furthermore, we have convergence∫ T

0
An dWt

L2(Ω)→
∫ T

0
A dWt .

Remark: There are myriad measurability issues we are glossing
over. Typically, we ask that A : Ω× [0,T ]→ R is:

Square-integrable

”Progressively measurable”

”Adapted” + continuous, or ”predictable”

In this case, the Ito integral of A is a martingale.
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Ito’s Formula

How do we compute Ito integrals in practice? Ito’s formula.

Theorem (Ito’s Formula)

Suppose that Xt is a stochastic process satisfying the SDE

dXt = µ(Xt , t) dt + σ(Xt , t) dWt ,

for ”nice” µ and σ. Let f : R× [0,T ]→ R be C 2. Set
Yt = f (Xt , t). Then Yt satisfies the SDE

dYt =

(
∂f

∂t
+
∂f

∂x
µ+

1

2

∂2f

∂x2
σ2

)
dt +

∂f

∂x
σ dWt

=
∂f

∂t
dt +

∂f

∂x
dXt +

1

2

∂2f

∂x2
σ2 dt.
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Ito’s Formula

Lemma

1 d
(
W 2

t

)
= dt + 2Wt dWt

2 d (tWt) = Wt dt + t dWt

Proof.

Let 0 = t0 < t1 < · · · < tn = t. Approximate the Ito integral:

n−1∑
k=0

2Wtk

(
Wtk+1

−Wtk

)
= W 2

tn −
n∑

k=0

(
Wtk+1

−Wtk

)2 P→W 2
t − t.

Similar for (2).
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Ito’s Formula

Lemma (Ito Product Rule)

Let Xt and Yt satisfy:{
dXt = µ1 dt + σ1 dWt

dYt = µ2 dt + σ2 dWt .

Then
d (XtYt) = Yt dXt + Xt dYt + σ1σ2 dt.

Proof.

Approximate by step processes. Use previous lemma. Be careful
about convergence.

C. Miller Stochastic Analysis



Overview of Probability
Stochastic Analysis
Major Applications

Conclusion

Brownian Motion
Stochastic Integration
Ito’s Formula

Ito’s Formula

Lemma (Ito Product Rule)

Let Xt and Yt satisfy:{
dXt = µ1 dt + σ1 dWt

dYt = µ2 dt + σ2 dWt .

Then
d (XtYt) = Yt dXt + Xt dYt + σ1σ2 dt.

Proof.

Approximate by step processes. Use previous lemma. Be careful
about convergence.

C. Miller Stochastic Analysis



Overview of Probability
Stochastic Analysis
Major Applications

Conclusion

Brownian Motion
Stochastic Integration
Ito’s Formula
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Theorem (Ito’s Formula)

Suppose that Xt is a stochastic process satisfying the SDE
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for ”nice” µ and σ. Let f : R× [0,T ]→ R be C 2. Set
Yt = f (Xt , t). Then Yt satisfies the SDE

dYt =
∂f

∂t
dt +

∂f

∂x
dXt +

1

2

∂2f

∂x2
σ2 dt.

Proof.

Apply lemmas inductively to compute d(tnXm
t ). Approximate f ,

∂f
∂x , ∂2f

∂x2 , and ∂f
∂t by polynomials. Be careful about convergence.
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Martingale Representation Theorem

Theorem

Let Wt be a Brownian motion with filtration Ft . Let Mt be a
continuous, square-integrable martingale with respect to Ft , along
with a few other technical, but reasonable, conditions. Then there
exists a predictable process φt such that:

Mt = M0 +

∫ t

0
φs dWs .

Significance:

Brownian motion is the archetypal continuous,
square-integrable martingale.
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Feynman-Kac Formula

Theorem

Consider the parabolic PDE on R× [0,T ]:

∂u

∂t
+ µ(x , t)

∂u

∂x
+

1

2
σ2(x , t)

∂2u

∂x2
− V (x , t)u + f (x , t) = 0,

with the terminal condition u(x ,T ) = Ψ(x). Then:

u(x , t) = E
[∫ T

t
e−

∫ r
t V (Xτ ,τ) dτ f (Xr , r) dr

+e−
∫ T
t V (Xτ ,τ) dτΨ(XT ) | Xt = x

]
where Xt is a solution to the SDE

dXt = µ(Xt , t) dt + σ(Xt , t) dWt .
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Feynman-Kac Formula

Proof.

Define a stochastic process:

Yr = e−
∫ r
t V (Xτ ,τ) dτu(Xr , r) +

∫ r

t
e−

∫ s
t V (Xτ ,τ) dτ f (Xs , s) ds.

Apply Ito’s formula, use the PDE to cancel a lot of terms, and get:

YT = Yt +

∫ T

t
e−

∫ s
t V (Xτ ,τ) dτσ(Xs , s)

∂u

∂x
dWs .

Taking conditional expectations on each side and using the
martingale-property of Ito integrals, we get:

u(x , t) = E [Yt | Xt = x ] = E [YT | Xt = x ] .
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Hamilton-Jacobi-Bellman Equation

Consider a process X which is driven by a control αt via the SDE:

dXt = µ(Xt , αt , t) dt + σ(Xt , αt , t) dWt .

Consider the optimization problem:

V (x , t) = max
α(·)

{
E
[∫ T

t
r(Xs , αs , s) ds + g(XT ) | Xt = x

]}
.

Theorem (HJB Equation)

Assuming µ, σ, r , and g are all ”nice”, V is a solution (in a weak
sense) to the fully non-linear PDE:{

0 = ∂V
∂t + supα

{
r(x , α, t) + µ(x , α, t)∂V∂x + 1

2σ(x , α, t)2 ∂2V
∂x2

}
V (x ,T ) = g(x)
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Hamilton-Jacobi-Bellman Equation

Proof

To illustrate the main idea, we proceed formally, assuming that a
optimal control α∗t exists and everything in sight is smooth.

For any
ε > 0, for sufficiently small 0 < h < T − t, we have for all α ∈ R:

V (x , t) + ε ≥ E
[∫ t+h

t
r(Xs , α, s) ds + V (Xt+h, t + h) | Xt = x

]
V (x , t)− ε ≤ E

[∫ t+h

t
r(Xs , α

∗
t , s) ds + V (Xt+h, t + h) | Xt = x

]
.
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Hamilton-Jacobi-Bellman Equation

Then, we conclude:

2ε ≥ |V (x , t)−sup
α

{
E
[∫ t+h

t
r(Xs , α, s) ds + V (Xt+h, t + h) | Xt = x

]}
|.

Applying Ito’s formula to the term inside the expectation, we see:∫ t+h

t
r(Xs , α, s) ds + V (Xt+h, t + h)

= V (Xt , t) +

∫ t+h

t

(
r +

∂V

∂t
+ µ

∂V

∂x
+

1

2
σ2∂

2V

∂x2

)
ds

+

∫ t+h

t
· · · dWs .
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Hamilton-Jacobi-Bellman Equation

Now, using the martingale property of Ito integrals, we obtain:

2ε ≥ |sup
α

{
E
[∫ t+h

t

(
r +

∂V

∂t
+ µ

∂V

∂x
+

1

2
σ2∂

2V

∂x2

)
ds | Xt = x

]}
|.

Then taking ε, h→ 0, we obtain:

0 =
∂V

∂t
+ sup

α

{
r(x , α, t) + µ(x , α, t)

∂V

∂x
+

1

2
σ(x , α, t)2∂

2V

∂x2

}
.
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Conclusion

Stochastic analysis provides a mathematical framework for
uncertainty quantification and local descriptions of global
stochastic phenomena.

Deep connections to elliptic and parabolic PDE,

Characterizes large classes of continuous-time stochastic
processes,

Fundamental tools for the working analyst.
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