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Project Overview

We examine optimal portfolio allocation with transaction
constraints via duality methods

Various models of asset returns and transaction costs

Correlations and uncertainty in estimated parameters

General algorithm to solve dual portfolio allocation problem.

Rapidly approximate optimal allocations with a large number of
assets and uncertain parameters.
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Problem Description

Single-period investment model with n assets:

Risk-return preference: f = f1 + · · ·+ fn,

Transaction costs: g = g1 + · · ·+ gn,

Investment constraint: wi ∈ [w i ,w i ] =Wi .

Assume that we can rapidly optimize:

min
wi∈Wi

fi (wi ) + λgi (wi ).
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Lagrangian Relaxation

In general, we consider an investment problem of the form:

p∗ = min
w∈W

{f (w) : g(w) ≤ τ} .

In this project, we consider the related problem:

d∗ = max
λ≥0

min
w∈W

L(w , λ)

where L(w , λ) = f (w) + λ (g(w)− τ) .
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Lagrangian Relaxation

Proposition

With the dual problem defined as above, p∗ ≥ d∗.

Proof.

Let w∗ ∈ W such that g(w∗) ≤ τ and f (w∗) = p∗. For all λ ≥ 0,

p∗ ≥ f (w∗) + λ (g(w∗)− τ)

≥ min
w∈W

{f (w) + λ (g(w)− τ)} .

Then
p∗ ≥ max

λ≥0
min
w∈W

L(w , λ) = d∗.
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Binary Model

In the binary model, we have fixed transaction costs for purchases
and disallow short-sales:

gi (ξ) =


+∞ if ξ < 0

0 if ξ = 0
bi if ξ > 0.

Theorem

We can construct an optimal solution (λ∗,w∗) to the dual problem
in the binary model in time O(n).

Corollary

There is no duality gap in the binary model with unit transaction
costs and integer-valued τ .
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Binary Model

Theorem

We can construct an optimal solution (λ∗,w∗) to the dual problem
in the binary model in time O(n).

Proof

d∗ = max
λ≥0

min
w∈W

{f (w) + λ (g(w)− τ)}

= max
λ≥0

{
−λτ +

n∑
i=1

min
wi∈Wi

fi (wi ) + λgi (wi )

}

= max
λ≥0

{
−λτ +

n∑
i=1

min

{
fi (0), λbi + min

0<wi≤w i

fi (wi )

}}
.
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Binary Model

d∗ = max
λ≥0

{
−λτ +

n∑
i=1

min
{

f 0
i , λbi + f +

i

}}
.

Maximization in O(n) via Quickselect algorithm.
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Ternary Model

In the ternary model, we have fixed transaction costs for both
purchases and sales:

gi (ξ) =


si if ξ < 0
0 if ξ = 0
bi if ξ > 0.

Furthermore, let us assume that we have the restriction on τ that

0 ≤ τ ≤
n∑

i=1

max (si , bi ) .
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Ternary Model

Proposition

The solution of the dual problem under the ternary model may be
written

d∗ = 1>f 0 + minu±

{
(h+)

>
u+ + (h−)

>
u− : u± ≥ 0,

u+ + u− ≤ 1,
b>u+ + s>u− ≤ τ

}
for appropriate vectors f 0, h+, and h−.

Theorem

We can construct an optimal solution (λ∗,w∗) to the dual problem
in the ternary model in polynomial time.
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Ternary Model

Proposition

In the ternary model, it is not true that p∗ = d∗ in general.

Proposition

Let (λ∗,w∗) be an optimal solution to the dual problem obtained
from the algorithm above. Then the duality gap is bounded by

0 ≤ p∗ − d∗ ≤ λ∗ (τ − g(w∗)) .
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Correlation Model

In the correlation model, we consider an objective function:

f (w , r̂) =
1

2
w>Σw − r̂>w ,

where r̂ ∈ R ⊂ Rn contains predicted returns and Σ is an estimate
of the covariance matrix.

The corresponding dual problem is:

d∗ = max
λ≥0

min
w∈W

max
r̂∈R
{f (w , r̂) + λ (g(w)− τ)}
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Numerical Tests

Tested under extra condition that
∑n

i=1 wi ≤ 1.
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Conclusions

Duality methods provide approximate allocations in difficult
portfolio optimization problems:

Usefulness of decomposability

Opportunities for parallelization in branch-and-bound methods

Approximate solution as input to solver for the primal problem.
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