Duality Methods in Portfolio Allocation with Transaction Constraints and Uncertainty

Christopher W. Miller

Department of Mathematics University of California, Berkeley

January 9, 2014

Project Overview

We examine optimal portfolio allocation with transaction constraints via duality methods

- Various models of asset returns and transaction costs
- Correlations and uncertainty in estimated parameters
- General algorithm to solve dual portfolio allocation problem.

Project Overview

We examine optimal portfolio allocation with transaction constraints via duality methods

- Various models of asset returns and transaction costs
- Correlations and uncertainty in estimated parameters
- General algorithm to solve dual portfolio allocation problem.

Rapidly approximate optimal allocations with a large number of assets and uncertain parameters.

Table of contents

- Background
 - Problem Description
 - Lagrangian Relaxation
- 2 Specific Models
 - Binary Model
 - Ternary Model
 - Correlation Model
- 3 Numerical Tests

Problem Description

Single-period investment model with n assets:

- Risk-return preference: $f = f_1 + \cdots + f_n$,
- Transaction costs: $g = g_1 + \cdots + g_n$,
- Investment constraint: $w_i \in [\underline{w}_i, \overline{w}_i] = \mathcal{W}_i$.

Problem Description

Single-period investment model with *n* assets:

- Risk-return preference: $f = f_1 + \cdots + f_n$,
- Transaction costs: $g = g_1 + \cdots + g_n$,
- Investment constraint: $w_i \in [\underline{w}_i, \overline{w}_i] = \mathcal{W}_i$.

Assume that we can rapidly optimize:

$$\min_{w_i \in \mathcal{W}_i} f_i(w_i) + \lambda g_i(w_i).$$

In general, we consider an investment problem of the form:

$$p^* = \min_{w \in \mathcal{W}} \{ f(w) : g(w) \le \tau \}.$$

In general, we consider an investment problem of the form:

$$p^* = \min_{w \in \mathcal{W}} \left\{ f(w) : g(w) \le \tau \right\}.$$

In this project, we consider the related problem:

$$d^* = \max_{\lambda \ge 0} \min_{w \in \mathcal{W}} \mathcal{L}(w, \lambda)$$

where
$$\mathcal{L}(w,\lambda) = f(w) + \lambda (g(w) - \tau)$$
.

Proposition

With the dual problem defined as above, $p^* \ge d^*$.

Proposition

With the dual problem defined as above, $p^* \ge d^*$.

Proof.

Let $w^* \in \mathcal{W}$ such that $g(w^*) \leq \tau$ and $f(w^*) = p^*$.

Proposition

With the dual problem defined as above, $p^* \ge d^*$.

Proof.

Let $w^* \in \mathcal{W}$ such that $g(w^*) \le \tau$ and $f(w^*) = p^*$. For all $\lambda \ge 0$,

$$p^* \geq f(w^*) + \lambda (g(w^*) - \tau)$$

$$\geq \min_{w \in \mathcal{W}} \{f(w) + \lambda (g(w) - \tau)\}.$$

Proposition

With the dual problem defined as above, $p^* \ge d^*$.

Proof.

Let $w^* \in \mathcal{W}$ such that $g(w^*) \leq \tau$ and $f(w^*) = p^*$. For all $\lambda \geq 0$,

$$p^* \geq f(w^*) + \lambda (g(w^*) - \tau)$$

$$\geq \min_{w \in \mathcal{W}} \{f(w) + \lambda (g(w) - \tau)\}.$$

Then

$$p^* \ge \max_{\lambda > 0} \min_{w \in \mathcal{W}} \mathcal{L}(w, \lambda) = d^*.$$

In the binary model, we have fixed transaction costs for purchases and disallow short-sales:

$$g_i(\xi) = \begin{cases} +\infty & \text{if } \xi < 0 \\ 0 & \text{if } \xi = 0 \\ b_i & \text{if } \xi > 0. \end{cases}$$

In the binary model, we have fixed transaction costs for purchases and disallow short-sales:

$$g_i(\xi) = \begin{cases} +\infty & \text{if } \xi < 0 \\ 0 & \text{if } \xi = 0 \\ b_i & \text{if } \xi > 0. \end{cases}$$

Theorem

We can construct an optimal solution (λ^*, w^*) to the dual problem in the binary model in time O(n).

In the binary model, we have fixed transaction costs for purchases and disallow short-sales:

$$g_i(\xi) = \begin{cases} +\infty & \text{if } \xi < 0 \\ 0 & \text{if } \xi = 0 \\ b_i & \text{if } \xi > 0. \end{cases}$$

Theorem

We can construct an optimal solution (λ^*, w^*) to the dual problem in the binary model in time O(n).

Corollary

There is no duality gap in the binary model with unit transaction costs and integer-valued τ .

Theorem

We can construct an optimal solution (λ^*, w^*) to the dual problem in the binary model in time O(n).

Theorem

We can construct an optimal solution (λ^*, w^*) to the dual problem in the binary model in time O(n).

Proof

$$d^* = \max_{\lambda > 0} \min_{w \in \mathcal{W}} \{ f(w) + \lambda (g(w) - \tau) \}$$

Theorem

We can construct an optimal solution (λ^*, w^*) to the dual problem in the binary model in time O(n).

Proof

$$d^* = \max_{\lambda \ge 0} \min_{w \in \mathcal{W}} \{ f(w) + \lambda (g(w) - \tau) \}$$
$$= \max_{\lambda \ge 0} \left\{ -\lambda \tau + \sum_{i=1}^{n} \min_{w_i \in \mathcal{W}_i} f_i(w_i) + \lambda g_i(w_i) \right\}$$

Theorem

We can construct an optimal solution (λ^*, w^*) to the dual problem in the binary model in time O(n).

Proof

$$d^* = \max_{\lambda \geq 0} \min_{w \in \mathcal{W}} \{ f(w) + \lambda (g(w) - \tau) \}$$

$$= \max_{\lambda \geq 0} \left\{ -\lambda \tau + \sum_{i=1}^n \min_{w_i \in \mathcal{W}_i} f_i(w_i) + \lambda g_i(w_i) \right\}$$

$$= \max_{\lambda \geq 0} \left\{ -\lambda \tau + \sum_{i=1}^n \min \left\{ f_i(0), \lambda b_i + \min_{0 < w_i \leq \overline{w}_i} f_i(w_i) \right\} \right\}.$$

$$d^* = \max_{\lambda \ge 0} \left\{ -\lambda \tau + \sum_{i=1}^n \min \left\{ f_i^0, \lambda b_i + f_i^+ \right\} \right\}.$$

Maximization in O(n) via Quickselect algorithm.

In the ternary model, we have fixed transaction costs for both purchases and sales:

$$g_i(\xi) = \begin{cases} s_i & \text{if } \xi < 0\\ 0 & \text{if } \xi = 0\\ b_i & \text{if } \xi > 0. \end{cases}$$

Furthermore, let us assume that we have the restriction on τ that

$$0 \leq \tau \leq \sum_{i=1}^n \max(s_i, b_i).$$

Proposition

The solution of the dual problem under the ternary model may be written

$$d^* = 1^{\top} f^0 + \min_{u^{\pm}} \left\{ (h^+)^{\top} u^+ + (h^-)^{\top} u^- : u^{\pm} \ge 0, \\ u^+ + u^- \le 1, \\ b^{\top} u^+ + s^{\top} u^- \le \tau \right\}$$

for appropriate vectors f^0 , h^+ , and h^- .

Proposition

The solution of the dual problem under the ternary model may be written

$$d^* = 1^{\top} f^0 + \min_{u^{\pm}} \left\{ (h^+)^{\top} u^+ + (h^-)^{\top} u^- : u^{\pm} \ge 0, \\ u^+ + u^- \le 1, \\ b^{\top} u^+ + s^{\top} u^- \le \tau \right\}$$

for appropriate vectors f^0 , h^+ , and h^- .

Theorem

We can construct an optimal solution (λ^*, w^*) to the dual problem in the ternary model in polynomial time.

Proposition

In the ternary model, it is not true that $p^* = d^*$ in general.

Proposition

In the ternary model, it is not true that $p^* = d^*$ in general.

Proposition

Let (λ^*, w^*) be an optimal solution to the dual problem obtained from the algorithm above. Then the duality gap is bounded by

$$0 \le p^* - d^* \le \lambda^* (\tau - g(w^*)).$$

Correlation Model

In the correlation model, we consider an objective function:

$$f(w,\hat{r}) = \frac{1}{2}w^{\top}\Sigma w - \hat{r}^{\top}w,$$

where $\hat{r} \in \mathcal{R} \subset \mathbb{R}^n$ contains predicted returns and Σ is an estimate of the covariance matrix.

Correlation Model

In the correlation model, we consider an objective function:

$$f(w,\hat{r}) = \frac{1}{2}w^{\top}\Sigma w - \hat{r}^{\top}w,$$

where $\hat{r} \in \mathcal{R} \subset \mathbb{R}^n$ contains predicted returns and Σ is an estimate of the covariance matrix.

The corresponding dual problem is:

$$d^* = \max_{\lambda \geq 0} \min_{w \in \mathcal{W}} \max_{\hat{r} \in \mathcal{R}} \left\{ f(w, \hat{r}) + \lambda \left(g(w) - \tau \right) \right\}$$

Numerical Tests

Tested under extra condition that $\sum_{i=1}^{n} w_i \leq 1$.

Conclusions

Duality methods provide approximate allocations in difficult portfolio optimization problems:

- Usefulness of decomposability
- Opportunities for parallelization in branch-and-bound methods
- Approximate solution as input to solver for the primal problem.