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Abstract

We examine the application of duality methods to portfolio allocation with transaction
constraints. We consider various models of asset returns and transaction constraints. In each
model, we propose algorithms to efficiently find optimal solutions to the dual problem and
examine when the solution to the dual problem is a minimizer of the primal problem. In par-
ticular, we consider mean-variance objective functions, both with correlation and without,
as well as uncertainty in return and volatility parameters. We also consider transactions cost
models with fixed costs that are different for long and short positions. Finally, we implement
a general algorithm for locating optimal solutions to these dual portfolio allocation problem.

1 Problem Description

We consider a single-period investment model involving n assets. For each asset, we assume that
the risk-return preference is given by a convex function fi : RÑ R. Our basic goal throughout
this paper is to minimize the objective function f : Rn Ñ R given by

fpwq �
ņ

i�1

fipwiq,

over the set W � W1 � � � � �Wn, where every Wi is a given interval rwi, wis, where wi   wi.
This corresponds to choosing a portfolio of uncorrelated assets which minimize the risk-return
preference under constraints on sizes of both long and short positions.

We also assume that there are transaction costs. Given an initial position w0 P Rn, the total
transaction cost for taking a position w from the initial position w0 is given by

gpwq �
ņ

i�1

gipwi � w0
i q,

where, for every i � 1, . . . , n, the functions gi : RÑ R are given. We do not assume that these
cost functions are convex or even continuous.

The crucial assumption which we will rely on in Sections 3 and 4 is that both f and g are
decomposable functions. In addition, we will make the assumption that for any scalar λ ¥ 0,
and every i � 1, . . . , n, finding a minimizer for the problem

min
ξPWi

fipξq � λgipξq
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can be efficiently done, algorithmically or otherwise.

Then in general, we consider an investment problem of the form

p� � min
wPW

tfpwq : gpwq ¤ τu

where τ ¥ 0 is a bound on the total amount of transaction costs. We henceforth refer to this
as the primal problem.

2 Lagrange Relaxation for the Generic Problem

Rather than considering the primal problem above with inequality constraints, we will consider
a dual problem where a Lagrange multiplier λ ¥ 0 controls the cost of breaking the transaction
bound. For more information on the relationship between primal and dual problems in convex
optimization, see [1].

We consider an associated Lagrangian defined by

Lpw, λq � fpwq � λ pgpwq � τq .

Then we can define a function of λ as

Dpλq � min
wPW

Lpw, λq.

We henceforth refer to this minimization as the Lagrangian sub-problem. Note, this is a concave
function of λ as a minimum over functions which are linear in λ. Then we can define an
associated maximization problem as

d� � max
λ¥0

Dpλq.

We henceforth refer to this maximization as the dual problem.

2.1 General results about dual problem

We can make some immediate observations about the relationship between p� and d� without
assuming a particular form for the objective functions or transaction costs.

Proposition 1. With the dual problem defined as above, p� ¥ d�.

Proof. Let λ ¥ 0. Then for any w PW such that gpwq ¤ τ , we have

fpwq ¥ fpwq � λ pτ � gpwqq � Lpw, λq.

Now, taking the minimum over w P W without the restriction on gpwq can only result in a
smaller value, so

p� � min
wPW

tfpwq : gpwq ¤ τu ¥ min
wPW

Lpw, λq � Dpλq.

This inequality holds for all λ ¥ 0, so

p� ¥ max
λ¥0

Dpλq � d�.

2



Proposition 2. Let λ� be a maximizer of Dpλq, and w� be a corresponding minimizer of
Lpw, λ�q. Suppose that gpw�q � τ . Then p� � d�.

Proof. We already showed p� ¥ d�, so it suffices to show that if gpw�q � τ then d� ¥ p�. But
then

d� � Lpw�, λ�q � fpw�q � λ� pτ � gpw�qq � fpw�q.

Furthermore, because gpw�q ¤ τ , we conclude that

d� � fpw�q ¥ min
wPW

tfpwq : gpwq ¤ τu � p�.

2.2 Algorithm to solve general dual problem

We now consider a general purpose algorithm which may be used to find sub-optimal solutions
which approximate the optimal solution of the dual problem described above. We assume that
we know an upper bound on the optimal λ�, given by λ.

Recall that Dpλq is a concave function. The key to our algorithm is to note that we can
easily compute super-gradients of Dpλq and use these to locate a maximum.

Lemma 1. For any λ�, let w� be a minimizing allocation of Lpw, λ�q. Then gpw�q � τ is a
super-gradient of Dpλq at λ�.

Proof. Fix λ� and let w� be a minimizing allocation of Lpw, λ�q. Consider any other λ. Then

Dpλq ¤ Lpw�, λq � �λτ � fpw�q � λgpw�q

� pgpw�q � τq pλ� λ�q � λ�τ � fpw�q � λ�gpw�q

� pgpw�q � τq pλ� λ�q �Dpλ�q.

Then we conclude that gpw�q � τ is a super-gradient of Dpλq at λ�.

Theorem 1. Suppose we are given an upper-bound λ on λ�. Furthermore, suppose that we can
find minimizing allocations of Lpw, λq for any λ in time Opfpnqq, where f does not depend on
λ. Then for any ε ¡ 0, we can construct an ε-suboptimal solution pλ�, w�q to the dual problem
in time O p�fpnq logpεqq via the algorithm shown in Algorithm 1.

Proof. Let λ� be any maximizing value of Dpλq. By hypothesis, we have that 0 ¤ λ� ¤ λ. We
will reduce the size of this closed set by one-half in each step, while guaranteeing an inductive
hypothesis that some λ� is always contained inside.

For any λ, we will denote the super-gradient at λ determined in the previous lemma by
D1pλq � gpwλq � τ . First, note that if D1pλq � 0 then λ must be a maximizing value of Dpλq.
However, the converse is not necessarily true. Furthermore, consider any two points x, y such
that there is a maximizing point between them, x   λ�   y. Then D1pxq ¥ 0 and D1pyq ¤ 0.

Consider a step where we are examining the interval with λl   λr. We assume by the
inductive hypothesis that there is a maximizing value of Dpλq in the interval rλl, λrs. Then if
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Input: Lagrangian function L, a cost function g, a transaction limit τ , an error
tolerance ε ¡ 0, and an upper bound on the maximizing point λ.

Output: An ε-suboptimal solution pλ�, w�q to the dual problem.
λl Ð 0
wl Ð arg minwPW Lpw, λlq
ml Ð gpwlq � τ

λr Ð λ
wr Ð arg minwPW Lpw, λrq
mr Ð gpwrq � τ
while λr � λl ¡ ε or }wr � wl}8 ¡ ε do

if ml ¤ 0 then
pλr, wr,mrq Ð pλl, wl,mlq

else if mr ¥ 0 then
pλl, wl,mlq Ð pλr, wr,mrq

else
λm Ð 1

2 pλl � λrq
wm Ð arg minwPW Lpw, λmq
mm Ð gpwmq � τ
if mm ¤ 0 then

pλr, wr,mrq Ð pλm, wm,mmq
else

pλl, wl,mlq Ð pλm, wm,mmq

end
pλ�, w�q Ð pλl, wlq
return pλ�, w�q

Algorithm 1: DualProblemSolver

D1pλlq ¤ 0, it must be a maximizing value by the argument in the previous paragraph. Simi-
larly, if D1pλrq ¥ 0, it must be a maximizing value. This case is illustrated in Figure 1a.

Now, assume that D1pλlq ¡ 0 and D1pλrq   0. Let λm be the mid-point of λl and λr. If
D1pλmq ¤ 0, then the maximizing point in rλl, λrs cannot be in pλm, λrs, so we conclude that
there must be a maximizing point in rλl, λms. Otherwise, we conclude that there must be a
maximizing point in rλm, λrs. This case is illustrated in Figure 1b.

In either case, each step of this process reduces the size of the interval examined by one-half.

(a) Maximizing point on boundary. (b) Maximizing point in interior.

Figure 1: Illustrations of different super-gradient cases in the algorithm being described.
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By compactness, there is a uniform δ ¡ 0, independent of λ, within which optimal allocations
can differ by at most ε, so we reach an ε-suboptimal solution in Op� logpεqq steps. Each of these
requires one evaluation of a super-gradient, which takes Opfpnqq time by assumption, so this
algorithm will return an ε-suboptimal solution in time Op�fpnq logpεqq.

3 Binary Model

In this section we consider a binary model for transaction costs where initial positions w0 are
all zero, each asset has a fixed transaction cost bi ¡ 0 for purchases, and short-sales are not
possible. In particular, we consider the special case of

gipξq �

$&
%

�8 if ξ   0
0 if ξ � 0
bi if ξ ¡ 0.

3.1 Homogeneous transaction costs

For simplicity, we first assume that all costs bi are equal and, without loss of generality, equal
to one. Furthermore, we let τ be an integer taken in t0, 1, . . . , nu. In this case we can efficiently
find a minimizer of the dual problem and prove that there is no duality gap.

Proposition 3. The solution to the dual problem under the binary model may be written

d� � max
λ¥0

#
�τλ�

ņ

i�1

min
�
f0
i , λ� f�i

�+

for appropriate vectors f0 and f�.

Proof. If we consider the dual problem from the previous section, immediate simplifications are
possible. In particular, we note that for any λ ¥ 0 by decomposability,

Dpλq � min
wPW

#
�λτ �

ņ

i�1

pfipwiq � λgipwiqq

+

� �λτ �
ņ

i�1

min
wiPWi

tfipwiq � λgipwiqu .

But because gipξq only takes on two values, we can write each minimization problem as

min
wiPWi

tfipwiq � λgwpwiqu � min

�
fip0q, λ� min

0 wi¤wi
fpwiq



.

For notational convenience, we define"
f0
i � fip0q
f�i � min tfipwiq : 0   wi ¤ wiu ,

as well as
w�i � arg min

0 wi¤wi

fipwiq.

Then we can write the dual problem as

d� � max
λ¥0

#
�λτ �

ņ

i�1

min
�
f0
i , λ� f�i

�+
.
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The usefulness of this result is that Dpλq can be easily understood as the sum of a linear
function and n kinked piecewise linear functions. This interpretation is useful is finding maxi-
mizing values λ� of Dpλq.

Theorem 2. We can construct an optimal solution pλ�, w�q to the dual problem in the binary
model in time Opnq via the algorithm shown in Algorithm 2.

Input: Objective functions fi, maximal allocations wi, and trade cap τ .
Output: An optimal solution pλ�, w�q to the dual problem.
for iÐ 1 to n do

f0
i Ð fip0q
w�i Ð arg mintfipwiq : 0   wi ¤ wiu
f�i Ð fipw

�
i q

λi Ð f0
i � f�i

end
λ� Ð pτ � 1qth largest value of λi counting multiplicity
λ� Ð maxtλ�, 0u
for iÐ 1 to n do

if λi ¤ λ� then
w�i Ð 0

end

end
return pλ�, w�q

Algorithm 2: BinaryProblemSolver

Proof. Consider the function which we are maximizing

Dpλq � �λτ �
ņ

i�1

min
�
f0
i , λ� f�i

�
.

Define λi � f0
i � f�i . Then for each asset, the graph of min

�
f0
i , λ� f�i

�
is piecewise linear

with slope 1 for λ   λi and slope 0 for λ ¡ λi. As a sum of these, Dpλq is a piecewise linear
function with kinks at each λi. Furthermore, for large enough λ, Dpλq has slope �τ , and for
small enough λ, Dpλq has slope n � τ . An illustration of Dpλq with examples values is shown
in Figure 2.

Now, consider a permutation σ such that

λσp1q ¥ λσp2q ¥ � � � ¥ λσpnq.

Because the slope changes by one at each λi, the slope is zero on the interval
�
λσpτ�1q, λστ

�
.

Furthermore, Dpλq must be non-increasing above λσpτ�1q. Then either λσpτ�1q is a maximizing
value, if it is non-negative, or otherwise a maximizing value is at λ� � 0.

Once a maximizing value λ� is chosen, a corresponding optimal allocation can be created
by buying all assets with λi ¡ λ�. This is a feasible allocation because there are not more than
τ assets that satisfy this by our construction of λ�.

The limiting step in this algorithm is identifying the pτ � 1qth largest value of λi. The key
to the Opnq time is to recognize that we do not actually have to sort all of the λi values. The
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Figure 2: Example of Dpλq in the binary model with n � 3 and τ � 2.

pτ � 1qth largest value may be obtained in linear time via the QuickSelect algorithm[4].

Corollary 1. There is no duality gap in the binary model with homogeneous transaction costs
and integer-valued τ .

Proof. First, assume there is no multiplicity in the λi in this problem. Then the algorithm above
results in an optimal allocation w� such that gpw�q � τ . Then by Proposition 2 in Section 2,
there is no duality gap.

Now, assume that there is multiplicity in the λi. If there is no multiplicity on the τth
largest value, then there are still no problems. However, if there is multiplicity on the τth
largest value, then this algorithm returns an optimal allocation pw�, λ�q with gpw�q ¤ τ . How-
ever, if gpw�q   τ then there are τ � gpw�q assets with λi � λ� which are not being purchased.
At this value of λ, the investor is indifferent between purchasing them or not, so by purchasing
them, there is a w̃� such that gpw̃�q � τ and fpw̃�q � fpw�q. Then p� � d�, even if this
particular algorithm does not return an allocation with gpw�q � τ .

The homogeneous transaction cost binary model algorithm described above was implemented
in MATLAB. In Figure 3, we show a graph of the average run-time versus number of assets.
It seems that this algorithm successfully runs in approximately linear time with respect to the
number of assets. This feature will hold neither in the models to come nor once we add con-
straints on net allocations of wealth.

3.2 Fully general binary model

To begin generalizing the binary model problem, we consider the case when τ P r0, ns is not an
integer. Intuitively, because all assets have a transaction cost of one, there is no way that the
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Figure 3: Runtime of the homogeneous binary model algorithm compared to number of assets.

solution would be to purchase more than the floor of τ assets. Then we expect that the mini-
mizer of the problem with the floor of τ will be a minimizer of the problem with non-integral τ .

Proposition 4. If τ P r0, ns is not an integer, then if we modify the normal algorithm to find
the tτ uth largest λi then it will output an optimal solution to the dual problem.

Proof. Let τ P r0, ns not be an integer, so tτ u   τ   rτ s. Then following the notation of the
theorem about the algorithm for the homogeneous binary model, let σ be a permutation such
that

λσp1q ¥ � � � ¥ λσpnq.

Then Dpλq will change sign at λσptτ uq. So λ� � λσptτ uq. Then by construction, the algorithm
will produce an allocation w� with gpw�q ¤ tτ u   τ .

Unfortunately, as soon as we have non-integer transaction cost limits, there may be a duality
gap. This is best illustrated by an example.

Proposition 5. When τ P r0, ns is not an integer, it is not true that p� � d� in general.

Proof. Consider a counterexample with only one asset. Let fpξq � 1
2ξ

2 � ξ, b � 1, and τ � 1
2 .

Then it is immediately clear that p� � 0.

On the other hand, we can easily check that

Dpλq � �
1

2
λ�mint0, λ�

1

2
u.

This function is piecewise linear and maximized at λ � 1
2 . Here it takes on a value of d� � �1

4 .

Therefore, we conclude that p� ¡ d�.
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This example illustrates that in the general case, we cannot expect strong duality to hold.
There will be a potential duality gap, even in the binary model with non-integer transaction
cost limits.

We next consider the case when not all bi all equal, which we refer to as the inhomoge-
neous transaction cost binary model. The first thing to notice is not it is natural to ask that
0 ¤ τ ¤

°n
i�1 bi. Furthermore, there is no reason to ask τ to be an integer at all.

In this case we can simplify Dpλq to

Dpλq � �τλ�
ņ

i�1

mintf0
i , biλ� f�i u.

Furthermore, we can generalize the algorithm above. In particular, we now compute λi �
b�1
i

�
f0
i � f�i

�
and find the smallest λ� ¥ 0 such that the sum of all bi corresponding to λi ¡ λ�

is less than or equal to τ . This can be done in Opn log nq by sorting all the λi.

Once again, however, it is easy to see that as soon as bi are not equal, there is no reason to
expect p� � d�, even when τ is an integer. This is illustrated by an example.

Proposition 6. When bi are not all equal, it is not true that p� � d� in general.

Proof. Consider a counterexample with two assets. Let f1pξq � f2pξq �
1
2ξ

2�2ξ, b1 � 1, b2 � 2,
and τ � 2.

First, we compute p� directly. Note, buying neither asset or buying exactly one is feasible,
but buying both is infeasible. If we buy an asset, it is optimal to purchase 2 units of it and
achieve a payoff of -2. If we purchase neither, we get a payoff of 0. Then p� � �2.

On the other hand, let us compute d� and compare. It is easy to check that

Dpλq � �2λ�mint0, 2λ� 2u �mint0, λ� 2u.

This function is piecewise linear and maximized at λ � 1. Here it takes on a value of d� � �3.

Therefore, we conclude that p� ¡ d�.

These two examples illustrate that general models will always have a potential duality gap.
In Section 4 we will consider the more general ternary model, and also provide a method for
estimating the size of this duality gap.

4 Ternary Model

In this section we consider a ternary model for transaction costs where each asset has a fixed
transaction cost bi ¡ 0 for purchases, and a fixed transaction cost si ¡ 0 for short-sales. In
particular, we consider the special case of

gipξq �

$&
%

si if ξ   0
0 if ξ � 0
bi if ξ ¡ 0.
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Furthermore, let us assume that we have the restriction on τ that

0 ¤ τ ¤
ņ

i�1

max psi, biq .

4.1 General results in ternary model

Similar to the binary problem, we can simplify the dual problem. Let λ ¥ 0, and note by
decomposability that

Dpλq � min
wPW

#
�λτ �

ņ

i�1

�
fipwiq � λgipwi � w0

i q
�+

.

As in the binary model, we can separate into separate regimes of buying, holding, and selling.
However, in order to fully simplify this problem we require the following lemma about when
minimums and maximums may be interchanged.

Lemma 2 (Minimax Lemma). Let K be a compact convex subset of a finite-dimensional vector
space and C be a convex subset of a vector space. Let f be a real-valued function defined on
K � C such that

1. x ÞÑ fpx, yq is convex and lower-semicontinuous for each y,

2. y ÞÑ fpx, yq is concave for each x.

Then
inf
xPK

sup
yPC

fpx, yq � sup
yPC

inf
xPK

fpx, yq.

Proof. For a proof of this theorem, see [6].

Proposition 7. The solution of the dual problem under the ternary model may be written

d� � 1Jf0 �min
u�

!�
h�

�J
u� �

�
h�

�J
u� : u� ¥ 0, u� � u� ¤ 1, bJu� � sJu� ¤ τ

)
for appropriate vectors f0, h�, and h�.

Proof. Recall that we can immediately write the dual problem in the ternary model as

Dpλq � min
wPW

#
�λτ �

ņ

i�1

�
fipwiq � λgipwi � w0

i q
�+

� �λτ �
ņ

i�1

min
wiPWi

 
fipwiq � λgipwi � w0

i q
(
.

But because gipξq only takes on three values, we can write each minimization problem as

min
wiPWi

 
fipwiq � λgwpwi � w0

i q
(
� min

�
fipw

0
i q, biλ� min

w0
i wi¤wi

fpwiq, siλ� min
wi¤wi w

0
i

fpwiq

�
.

For notational convenience, we define$&
%

f0
i � fipw

0
i q

f�i � min
 
fipwiq : w0

i   wi ¤ wi
(

f�i � min
 
fipwiq : wi ¤ wi   w0

i

(
,
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as well as #
w�i � arg minw0

i wi¤wi
fipwiq

w�i � arg minwi¤wi w0
i
fipwiq.

Finally, if we let h�i � f�i � f0
i and h�i � f�i � f0

i , then we can write the dual problem as

d� � 1Jf0 �max
λ¥0

#
�λτ �

ņ

i�1

min
�
0, h�i � λbi, h

�
i � λsi

�+

� 1Jf0 �max
λ¥0

#
�λτ �

ņ

i�1

min
u�i

 �
h�i � λbi

�
u�i �

�
h�i � λsi

�
u�i : u�i ¥ 0, u�i � u�i ¤ 1

(+

� 1Jf0 �max
λ¥0

min
u�

!�
h�

�J
u� �

�
h�

�J
u� � λ

�
bJu� � sJu� � τ

�
: u� ¥ 0, u� � u� ¤ 1

)
.

At this point, however, we have an affine objective function being minimized over a convex
compact space in u� and maximized over a convex space in λ. Then we can apply the Minimax
Lemma to interchange the min and max, and obtain

d� � 1Jf0 �min
u�

"�
h�

�J
u� �

�
h�

�J
u� �max

λ¥0

 
λ
�
bJu� � sJu� � τ

�(
: u� ¥ 0, u� � u� ¤ 1

*

� 1Jf0 �min
u�

!�
h�

�J
u� �

�
h�

�J
u� : u� ¥ 0, u� � u� ¤ 1, bJu� � sJu� ¤ τ

)
,

where the extra constraint follows because the maximization over λ is�8 when bJu��sJu� ¡ τ
and zero otherwise.

At this point, it is worth noting that we have transformed a general convex optimization
problem into a linear programming problem. Then we immediately have major results and
algorithms for this problem.

Theorem 3. We can construct an optimal solution pλ�, w�q to the dual problem in the ternary
model in polynomial time via the algorithm shown in Algorithm 3.

Proof. Because the objective function is decomposable into quadratics, the computation of all
w�i and w�i can be done in linear time. The limiting step is obtaining an optimal solution u� to
the equivalent problem from Proposition 7. This can be done in average-case polynomial time
with simplex methods, or even in polynomial worst-case time with ellipsoid methods[3].

Because the value of u�i corresponds to the minimum of

min
�
0, h�i � λbi, h

�
i � λsi

�
being attained in the holding, buying, or selling regime, once we have obtained an optimal u�

from the equivalent linear programming problem, we can convert back to an optimal portfolio by
holding at w0

i if u� � u� � 0, buying the optimal amount w�i if u� � 1, or selling the optimal
amount w�i if u� � 1. Note, the linear programming problem may have fractional allocations,
which correspond to assets which we are indifferent towards buying, selling, or holding. We
choose to hold these in the algorithm in order to guarantee that gpw�q ¤ τ .

Finally, in order to obtain λ�, we need to solve the implicit equation

d� � Lpw�, λ�q.
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Input: Objective functions fi, initial allocations w0
i , allocation limits wi and wi, trading

fees bi and si, and the trading fee limit τ .
Output: An allocation w� corresponding to an optimal solution pλ�, w�q to the dual

problem.
for iÐ 1 to n do

w�i Ð arg mintfipwiq : w0
i   wi ¤ wiu

w�i Ð arg mintfipwiq : wi ¤ wi   w0
i u

h�i Ð fipw
�
i q � fipw

0
i q

h�i Ð fipw
�
i q � fipw

0
i q

end
pd�, u�q Ð optimal solution to linear programming problem
for iÐ 1 to n do

w�i Ð 0
if u�i � 1 then

w�i Ð w�i
end
if u�i � 1 then

w�i Ð w�i
end

end
λ� Ð solve Lpw�, λq � d�

return pλ�, w�q
Algorithm 3: TernaryProblemSolver

But for fixed w�, this is linear in λ, so this can be done in linear time. Therefore, we obtain an
optimal solution pλ�, w�q to the dual problem overall in polynomial time.

The ternary model algorithm described above was implemented in MATLAB. In particu-
lar, we use the MATLAB linear programming routines with an active-set algorithm and sparse
matrices. In Figure 4, we show a graph of the average run-time versus number of assets. The
major difference between this and the general Algorithm 1 is that the latter much iteratively
determine λ�. Therefore, we expect this algorithm will be much faster when transaction cost
constraints bind (e.g. λ� ¡ 0).

4.2 Remarks and special cases

We next consider some special cases and remarks concerning the ternary model. In particular,
we focus on when we can simplify the solution to the linear programming problem and poten-
tially speed up the algorithm, and when we can determine information about the existence and
size of the duality gap.

Consider the case when bi � si for all assets i. It is clear that we can still have a duality gap
in this case, by extending the counterexample in Proposition 6 to the Ternary case. However,
we can speed up the ternary algorithm above substantially.

Corollary 2. If bi � si for all assets i, then the solution of the dual problem under the ternary

12



Figure 4: Runtime of the ternary model algorithm compared to number of assets.

model may be written

d� � 1Jf0 �min
u

 
hJu : 0 ¤ u ¤ 1, bJu ¤ τ

(
for appropriate vectors f0 and h. In particular, we can still construct an optimal solution
pλ�, w�q to the dual problem in polynomial time.

Proof. We reproduce the proof for the general case from above, but with additional simplifi-
cations because bi � si for all assets. Where details of the argument are omitted, refer to the
previous argument.

Because gipξq only takes on two values now, we can write each separated minimization
problem as

min
wiPWi

 
fipwiq � λgwpwi � w0

i q
(
� min

�
fipw

0
i q, biλ� min

wiPWi

fpwiq



.

Then we define "
f0
i � fipw

0
i q

fi � min tfipwiq : wi PWiu ,

as well as
wi � arg min

wiPWi

fipwiq.

If let hi � fi � f0
i , then we can write the dual problem as

d� � 1Jf0 �max
λ¥0

#
�λτ �

ņ

i�1

min p0, hi � λbiq

+

� 1Jf0 �max
λ¥0

min
u

 
hJu� λ

�
bJu� τ

�
: 0 ¤ u ¤ 1

(
.

Applying the Minimax Lemma as before to switch the minimum and maximum, we obtain

d� � 1Jf0 �min
u

"
hJu�max

λ¥0

 
λ
�
bJu� τ

�(
: 0 ¤ u ¤ 1

*
� 1Jf0 �min

u

 
hJu : 0 ¤ u ¤ 1, bJu ¤ τ

(
,
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where the extra constraint follows because the maximization over λ is �8 when bJu ¡ τ and
zero otherwise. As before, we can write an algorithm to solve this linear programming problem
and transform the solution u� into an optimal solution pλ�, w�q to the dual problem in polyno-
mial time.

Note, the overall complexity of the algorithm is the same as that when bi � si because it
relies on the complexity of the linear programming problem. However, the importance of this
result is that we can increase the speed by a constant factor across the board by utilizing this
symmetry in the problem.

Because we have shown that there in general may be a duality gap in the ternary model, we
would like to be able to estimate the size of this gap. We show below how we can get an upper
bound on the duality gap once we have solved the dual problem.

Proposition 8. Let pλ�, w�q be an optimal solution to the dual problem obtained from the
algorithm above. Then the duality gap is bounded by

0 ¤ p� � d� ¤ λ� pτ � gpw�qq .

Proof. First, recall from the proof of the algorithm’s validity that we will always have gpw�q ¤ τ
for the output. Then any allocation is a feasible allocation of the original problem. Therefore,
we have the following inequality

d� � fpw�q � λ� pτ � gpw�qq ¥ p� � λ� pτ � gpw�qq .

If we rearrange this inequality and also recall from Section 2 that p� ¥ d� in general, then we
obtain the bound

0 ¤ p� � d� ¤ λ� pτ � gpw�qq .

While this result allows estimation of the duality gap, it is important to keep in mind that
we can not control the optimal value of λ� in the dual problem a priori. Therefore, this result
cannot be used to obtain any sort of convergence of the optimal solution to the dual problem
to the optimal solution of the primal problem.

5 Taking into account uncertainty and correlations

Our model so far takes into account neither any correlation between the assets nor any uncer-
tainty in the model itself. In this section we generalize to an objective function

fpw, r̂q �
1

2
wJΣw � r̂Jw,

where r̂ P R � Rn contains predicted returns and Σ is an estimate of the covariance matrix.
For simplicity, we assume that R � R1 � � � � �Rn, where Ri is a given interval rri, ris, where
ri   ri. We make the same assumptions of the cost function g as in the ternary model. Then
we are considering an optimization problem of the form

p� � min
wPW

max
r̂PR

tfpw, r̂q : gpwq ¤ τu .
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As before, we consider the associated Lagrangian defined by

Lpw, r̂, λq � fpw, r̂q � λ pgpwq � τq .

Then we define a function of λ as

Dpλq � min
wPW

max
r̂PR

Lpw, r̂, λq.

Then the corresponding dual problem is given by

d� � max
λ¥0

Dpλq,

and the theory developed in Section 2 for general dual problems still holds.

5.1 Uncertainty in returns and no correlation

We consider the case when Σ is diagonal. In this case, the assumption of decomposability of f
and g still holds. In particular, the dual problem reduces to

d� � max
λ¥0

min
wPW

max
r̂PR

t�λτ � fpw, r̂q � λgpwqu

� max
λ¥0

#
�λτ �

ņ

i�1

min
wiPWi

max
r̂iPRi

"
1

2
σ2
iw

2
i � r̂iwi � λgipwi � w0

i q

*+
.

Then we can solve this dual problem with the same algorithm as given in Section 2 as long as
finding an optimizer for the problem

min
wiPWi

max
r̂iPRi

"
1

2
σ2
iw

2
i � r̂iwi � λgipwi � w0

i q

*

can be efficiently done, algorithmically or otherwise. We will consider alternative methods more
generally in the case with correlations.

5.2 Uncertainty in returns and certain correlation

We next consider the case when Σ � D � uuJ, where D is a diagonal matrix containing asset
variances and u P Rn is a vector that models how a specific factor affects the entire asset
universe. It is important to note that Σ is still positive semi-definite because

wJΣw � wJDw � wJuuJw � wJDw � pwJuq2 ¥ 0,

because D is positive semi-definite by assumption. Then the objective function f is still a con-
vex function.

The major issue here, however, is that we no longer can assume decomposability of f � λg
into different assets. One might hope to change basis to diagonalize Σ, but the transaction costs
are not basis-invariant, so this direction is fruitless. In this case, we apply the general algorithm
from Section 2. Note that in the dual formulation, we now have

Dpλq � min
wPW

max
r̂PR

"
1

2
wJΣw � r̂Jw � λgpwq � λτ

*
.

Fortunately, Dpλq is still a concave function with a minimizer λ�. Furthermore, because
the objective function is linear in r̂, it must be maximized in this variable at a boundary point.
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Because g is lower semi-continuous, we can switch the minimum and maximums by the Minimax
Lemma and write this as

Dpλq � max
r̂1Ptr1,r1u

� � � max
r̂nPtrn,rnu

min
wPW

"
1

2
wJΣw � r̂Jw � λgpwq � λτ

*
.

Next, we partition W into 3n regions corresponding to holding, buying, or selling each asset.
Consider the following notation: $&

%
W0
i � tw0

i u
W�
i �

�
w0
i , wi

�
W�
i �

�
wi, w

0
i

�
.

Then if for any string α P t0,�,�un, we define

Wα �
n¡
i�1

Wαi
i ,

we can write the optimization problem as

Dpλq � max
r̂1Ptr1,r1u

� � � max
r̂nPtrn,rnu

min
αPt0,�,�un

min
wPWα

"
1

2
wJΣw � r̂Jw � λgpwq � λτ

*
.

It is now clear that, this problem consists of solving 6n quadratic programming problems. How-
ever, we can cut down on this complexity by employing branch-and-bound techniques to only
explore a subset of these combinations.

The idea of our branch-and-bound procedure is to consider a tree generated by choices to
hold, buy, or sell each subsequent asset. If we can obtain a lower-bound to an entire sub-tree in
constant time, and find that this lower-bound is greater than an upper-bound for the entire tree,
then we can ignore that sub-tree. Then the key is to describe a constant time lower-bound of a
sub-tree, as well as a procedure for obtaining an upper-bound to an entire tree. For simplicity,
we let r � r and w0 � 0, though all proceeding arguments could be modified for the more
general case.

Lemma 3. Let α P t0,�,�un and 1 ¤ k   n. Consider the problem

dαk � min

#
1

2
wJΣw � r̂Jw � λτ �

ķ

i�1

λgipwiq : w PWα1
1 � � � �Wαk

k �Wk�1 � � � � �Wn

+
.

Then we have
dαk�1 ¥ dαk � λbk�1χtαk�1��u � λsk�1χtαk�1��u,

where χ is an indicator function.

Proof. This inequality is nearly trivial from the definition of dαk and the fact that bi, si ¥ 0.
In particular, for 1 ¤ k   n, let w be a minimizer of the pk � 1q-problem. Then this is also a
feasible solution of the k-problem, so we have

dαk�1 �
1

2
wJΣw � r̂Jw � λτ �

k�1̧

i�1

λgipwiq

� λgk�1pwk�1q �
1

2
wJΣw � r̂Jw � λτ �

ķ

i�1

λgipwiq

¥ dαk � λgk�1pwk�1q

� dαk � λbk�1χtαk�1��u � λsk�1χtαk�1��u.
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Figure 5: Illustration of branch-and-bound method for decision to hold, buy, or sell at asset
i. Sub-trees that have a lower-bound greater than the entire tree’s upper-bound are ignored.
Otherwise, the process is iterated.

The key to this definition is that each dαk is only a normal quadratic programming problem
because the cost function is a constant in the region over which we are minimizing. Furthermore,
given a minimal value of dαk , we can obtain a lower-bound on the value of dαk�1 in constant-time
for use in the branch-and-bound method. Furthermore, for at least one α, dαn will correspond
to the actual Lagrangian subproblem, Dpλq.

Lemma 4. There exists an α P t0,�,�un such that

dα0 ¤ dα1 ¤ � � � ¤ dαn�1 ¤ dαn � Dpλq.

Proof. Let w be a minimizer of the Lagrangian sub-problem, so Lpw, λq � Dpλq. Define α P
t0,�,�un via

αk �

$&
%

0 if wk � 0
� if wk ¡ 0
� if wk   0.

Then it is clear from the definition that dαn � Dpλq. Furthermore, by the previous lemma, when
λ ¥ 0, we have

dα0 ¤ dα1 ¤ � � � ¤ dαn�1 ¤ dαn � Dpλq.

With these results in hand, we can devise an algorithm to solve the Lagrangian sub-problem
via the branch-and-bound procedure.

Theorem 4. We can construct an optimal solution w� to the Lagrangian sub-problem in the
correlation model via the branch-and-bound algorithm shown in Algorithm 4.
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Input: Correlation matrix Σ, expected returns r̂, initial allocations w0
i , allocation limits

wi and wi, trading fees bi and si, a Lagrange multiplier λ, and the trading fee
limit τ .

Output: An allocation w� which minimizes the Lagrangian sub-problem Dpλq.
Create priority queue pq
αÐ p0, 0, � � � 0q
pw, dq Ð optimal allocation and value corresponding to dα0
pw�, d�q Ð pw,Lpw, λqq
Push pd,w, 1q to pq with priority d
while pq is not empty do

pd,w, kq Ð pop(pq)
for αk Ð t0,�,�u do

d1 Ð d� λbkχtαk��u � λskχtαk��u
if d1 ¥ d� then Continue
pw1, d1q Ð optimal allocation and value corresponding to dαk
if d1 ¥ d� then Continue
if Lpw1, λq ¤ d� then pw�, d�q Ð pw1,Lpw1, λqq
if k   n then Push pd1, w1, k � 1q to pq with priority d1

end

end
return w�

Algorithm 4: CorrelationProblemSolver

Proof. The queue in the algorithm above will only add elements up to k � n, so at most there
can be 3n elements added to the queue. Therefore, this algorithm will terminate eventually.
To see that it will return an optimal allocation of the Lagrangian sub-problem, we consider the
previous lemmas. We know there exists an α P t0,�,�un such that

dα0 ¤ dα1 ¤ � � � ¤ dαn � Dpλq.

At any point in the algorithm, d� � Lpw, λq for some w. Then for any k, we have

dαk ¤ Dpλq ¤ d�.

Therefore, the continues inside the while loop will never be triggered along this sequence cor-
responding to α. Finally, if wαn is the optimal allocation corresponding to dαk , then we will
have

Lpwαn , λq � Dpλq ¤ d�,

so at some point w� will be set to this optimal allocation. Because w� is a minimizer of the
Lagrangian, the condition to reset w� will never we met again unless by another minimizer, so
w� will be an optimal allocation of the Lagrangian sub-problem.

For more information on the theory and general results concerning branch-and-bound meth-
ods, see [2]. For our purposes, we will note that this allows us to obtain an optimizing vector w�

to the Lagrangian sub-problem. We can then compute a super-gradient as D1pλq � gpw�q � τ,
and we can proceed with the Algorithm 1 from Section 2.

18



5.3 Uncertainty in both returns and correlation

Lastly, we consider the case when Σ � D�uuJ�∆, with ∆ a positive semi-definite matrix that
models error in our measurement of the covariance matrix. Here, ∆ is unknown but bounded:
we assume }∆} ¤ ρ where ρ ¥ 0 is a known scalar and } � } denotes the largest singular value
norm. Once again, it is important that Σ is still a positive semi-definite operator, as discussed
in the previous subsection. Because the results of the previous subsection are a special case of
this problem, with ρ � 0, we expect that the results from the general binary and ternary models
will still not hold.

Consider the dual formulation corresponding to this problem. If we hope to apply the general
algorithm from Section 2, then we need to be able to solve the optimization problem

Dpλq � min
wPW

max
r̂PR

max
}∆}¤ρ

"
1

2
wJΣw � r̂Jw � λgpwq � λτ

*
.

The key to simplifying this problem is to note that the maximization over all positive semi-
definite matrices is easy to do analytically.

Lemma 5. Let w P Rn. Then if we maximize over all positive semi-definite matrices ∆ with
largest singular value norm }∆} ¤ ρ, we have

max
}∆}¤ρ

wJ∆w � ρwJw.

Proof. If w � 0, then the result is trivial. Otherwise, the key is to recall that the largest singular
value norm of a matrix ∆ is equal to

max
w�0

}∆w}

}w}
� }∆} ¤ ρ.

Then for any w, we have }∆w} ¤ ρ}w}. By the Cauchy-Schwarz inequality, we have

wJ∆w ¤ }w}}∆w} ¤ ρwJw.

Finally, for any w � 0, we can construct a positive semi-definite matrix ∆ which is ρ times
the projection operator onto the subspace spanned by w. This matrix has }∆} � ρ and clearly
satisfies wJ∆w � ρwJw.

Therefore, we conclude that max}∆}¤ρw
J∆w � ρwJw.

Using this result, we can simplify the problem above into a problem from the previous sub-
section.

Theorem 5. Adding uncertainty to asset correlations in the form of a positive semi-definite
matrix ∆ with largest singular value norm }∆} ¤ ρ is equivalent to adding a constant ρ to the
variance of each asset.

Proof. To prove this, we simply consider the Dpλq from above. Because the maximization over
∆ comes first, we can immediately use the lemma from above.

Dpλq � min
wPW

max
r̂PR

max
}∆}¤ρ

"
1

2
wJ

�
D � uuJ �∆

�
w � r̂Jw � λgpwq � λτ

*

� min
wPW

max
r̂PR

"
1

2
wJ

�
D � ρ� uuJ

�
w � r̂Jw � λgpwq � λτ

*
.
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Then we have shifted the uncertainty ∆ onto the diagonal of the covariance matrix. This cor-
responds to an increase in asset variances in D.

This result shows that really the most general problem we are considering in this paper is
that from the previous subsection. For an implementation of the correlation model in MAT-
LAB, see the general algorithm in Appendix A.

6 Conclusion

In this paper, we have examined the general principle of duality and its applications to port-
folio optimization with constraints in the form of transaction costs. We considered three main
models of increasing complexity and generality, including the binary model, the ternary model,
and the correlation model. The overarching theme is that decomposability of objective func-
tions and transaction costs allows for simplifications of the problem. In the correlation model,
the separability of the problem was violated, but we used a branch-and-bound algorithm to
dramatically cut down on the overall run-time.

Future work could focus on improving the implementation of these algorithms, and in partic-
ular taking advantage of obvious parallelism opportunities. For example, the binary and ternary
models both require sequential optimization of individual assets after decomposing the objective
function, which could easily be done in parallel. Furthermore, the linear programming algorithm
used in the ternary model and quadratic programming algorithm used in the correlation model
can both be sped up using parallelism. Finally, and most importantly, the branch-and-bound
algorithm used in Section 5 performs several independent minimization problems on different
sub-trees of the combinatorial search space. These could each be done in parallel to boost
run-time of the algorithm.

Another avenue of future work would be to develop further approximation methods of the
dual problem in the correlation method. For example, if it were not for the appearance of the
non-polynomial transaction cost terms, one promising strategy would be to change to a basis
of eigenvectors of the covariance matrix Σ. One could hope to approximate the transaction
costs with functions that allow this change of basis. This would lead to a variant of the branch-
and-bound algorithm where we instead perform relaxation on the cost function. This could
substantially increase the speed of obtaining an ε-suboptimal solution to the dual problem in
practice.
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Appendix A. Numerical Implementation

In this Appendix, we describe a general solver for all three models which was implemented in
MATLAB. In this section we add the extra constraint on overall net wealth being invested,

ņ

i�1

wi ¤ 1.

It is worth noting that this condition breaks the separability that allowed for general polynomial-
time results in the binary and ternary models.

In the attached MATLAB codes, we provide one general program which computes allo-
cations corresponding to optimizers pw�, λ�q of the dual problem in each model, subject to
constraints on transaction costs and the overall net investment constraint above. Because the
correlation model generalizes both the ternary and binary model, we use the super-gradient
algorithm in Algorithm 1 with the Lagrangian dual optimized via the branch-and-bound al-
gorithm in Algorithm 4. To solve quadratic programming problems, we use the a C-based
Quadratic Programming MATLAB interface known as QPC[5]. In particular, we use a primal-
dual predictor-corrector algorithm for quadratic programming problems constrained by linear
inequalities. We use sparse matrices in the binary and ternary models and dense matrices in
the correlation model.

To test this algorithm in general cases, we construct random inputs. In order to make sure
that the transaction cost and allocation constraints actually bind in general, we generated inputs
as follows. Returns are drawn uniformly from r�1, 1s, standard deviations are set to 1, upper
bounds to 1, lower bounds to �1, buy costs to 0.01 and sell costs to 0.02. The transaction cost
limit τ is set to one-half the sum of the buy costs plus a uniform random number on r0, 0.001s so
that the inputs are generic in terms of transaction costs. Finally, as applicable, each component
of the vector u which controls correlations is drawn uniformly from r�0.05, 0.05s.

In Figure 6, we show a graph of the average run-time versus number of assets and desired
accuracy ε in the full correlation model with a branch-and-bound algorithm. Each line corre-
sponds to a different cut-off for the accuracy of the solution to the dual problem, as described

Figure 6: Timings of full correlation branch-and-bound algorithm with varying number of assets
and desired accuracy, ε.
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Figure 7: Timings of binary, ternary, and full correlation models in the general purpose algo-
rithm with varying number of assets and desired accuracy ε � 0.01.

in Algorithm 1. In particular, the increase in computation time appears to be linear in ε, but
exponential in the number of assets. In Figure 7, we show a comparison of the scaling of the
binary model, the ternary model, and the full correlation model in this general purpose im-
plementation. In particular, while the correlation model appears to scale exponentially with
respect to the number of assets, even with the branch-and-bound algorithm, the binary and
ternary models exhibit superior scaling.
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