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Abstract

We present a simple convexity argument that clarifies the effectiveness and scope
of Sannikov’s approach [S] to continuous time principal-agent problems. We in partic-
ular stress the importance of the appropriate concavity of the agent’s running payoff
function as a function of his actions.

1 Introduction

This paper provides a simple reformulation and reinterpretation of Sannikov’s approach [S]
to principal-agent problems.

In so-called second-best continuous time principal-agent problems, the agent’s effort af-
fects an output process, which is subject also to external noise. The principal however cannot
directly observe the agent’s effort and can only monitor the stochastic output process. The
agent on the other hand has perfect observations. With this asymmetry of information, the
principal wants to offer a contract to the agent, comprising both a compensation scheme
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and a recommended effort strategy for the agent, such that (i) the agent has an incentive to
enter in the contract and (ii) the agent has no incentive to deviate from the recommended
effort strategy given the compensation scheme. The former and latter are, respectively, the
agent’s individual rationality and incentive compatibility conditions. The intention is that
through proper contracting, the principal can incentivize the agent to control the output
process in a way that is beneficial to the principal.

This work provides a reinterpretation of several ideas from Sannikov’s breakthrough paper
[S] on such principal-agent problems. Our easy proof of incentive compatibility for the agent
makes very clear the need for the concavity hypothesis (2.10) and furthermore does not
employ changes of measure nor backward SDE (as for instance in Cvitanic–Zhang [C-Z]; see
also Cvitanic–Possamai–Touzi [C-P-T]). Our method uses very little probability theory and
easily generalizes to higher dimensional problems with general dynamics, and even to the
case in which the agent’s effort affects the noise in the output process. We consider as well
principal-agent problems in which multiple agents simultaneously affect the output process.
We show that by using HJB equations, principal can design a contract, a compensation
scheme and a recommended effort strategy for each agent, such that the recommended efforts
constitute a Nash equilibrium.

We thank I. Ekeland for several email communications, and especially for pointing out
errors in a much earlier version of this paper. The paper [M-Y] gives further applications
and extensions of our methods.

2 A model problem

In this section we consider a fairly simple one-dimensional problem, to explain our approach
in the clearest possible setting. We work on the finite time interval [0, T ]. We hereafter use
A = A(t) to denote the agent’s actions, controlling the dynamics, and P = P (t) to denote
the principal’s ongoing payoffs to the agent, incentivizing him to take certain desired actions.
The letter R denotes a payoff reward from the principal to the agent at the terminal time T .

2.1 Statement of the problem.

Dynamics. In this first subsection, we follow Sannikov [S] and assume that the dynamics
depend linearly on the agent’s effort A and that the noise term depends on neither X nor
A: {

dX = Adt+ dB (0 ≤ t ≤ T )

X(0) = x.
(2.1)

Here B is a one-dimensional Brownian motion and we will sometimes write X = XA to
emphasize that the dependence on the control A.

2



We let F = FB = {F(t) | 0 ≤ t ≤ T} be the filtration generated by the Brownian motion
B, and write FX = {FX(t) | 0 ≤ t ≤ T} for the filtration generated by the process X.

Payoffs. The payoff Jπ for the principal and the payoff Jα for the agent have the formsJπ[A,P,R] := E
(∫ T

0
rπ(A,P ) dt+ q(R)

)
Jα[A,P,R] := E

(∫ T
0
rα(A,P ) dt+R

)
,

(2.2)

where rπ = rπ(a, p) denotes the principal’s running payoff and rα = rα(a, p) the agent’s
running payoff. The function q = q(r) is the negative of the cost to the principal of providing
at time T a final payout of size r to the agent.

The principal’s problem. The goal of the principal is to design A∗, P ∗, R∗ such that

Jπ[A∗, P ∗, R∗] = max
A,P,R

Jπ[A,P,R] (2.3)

subject to the constraints that

P,R are FX-adapted, (2.4)

and
Jα[A∗, P ∗, R∗] = max

A
Jα[A,P ∗, R∗], (2.5)

the maximum taken over F -adapted controls A. This is the agent’s incentive compatibility
condition.

The key point is that whereas the agent’s best control A∗ is F -adapted, the principal’s
controls P ∗ and R∗ must be FX-adapted; that is, the principal must decide what to do based
only upon her observations of X = XA and not upon B, which is unobservable to her.

How can the principal create incentives for the agent to do what the principal wants? In
particular, how can the principal encourage the agent to perform a desired action A∗? To
repeat, the agent’s actions and the Brownian motion are unobservable by the principal; she
can only observe X.

2.2 The contract, optimality for the agent. The following payment scheme is
inspired by Sannikov [S]; see also Ekeland [E].

Let
y(a, p) := −rαa (a, p) (2.6)

denote the negative of the partial derivative of rα in the first variable a. Given the smooth,
deterministic functions a = a(w, t) and p = p(w, t), we consider the SDE{

dW = −(rα(A∗, P ∗) + Y ∗A∗)dt+ Y ∗dX (0 ≤ t ≤ T )

W (0) = w.
(2.7)

3



where
A∗ := a(W, t), P ∗ := p(W, t), Y ∗ := y(A∗, P ∗). (2.8)

Note that the solution of this SDE depends upon the agent’s actions A, as recorded in the
“dX” term.

The principal agrees to pay the agent at the ongoing rate P ∗(t) := p(W (t), t), which at
each time t she can compute in terms of the observed dynamics {X(s) | 0 ≤ s ≤ t}. In
addition, the principal agrees to give the agent the final reward payout

R∗ := W (T ) (2.9)

at the terminal time T .

THEOREM 2.1. Assume the principal uses the control P ∗ and final payoff R∗, as above.
(i) Suppose also

a 7→ rα(a, p) is concave for each p. (2.10)

Then it is optimal for the agent to use the control A∗ = a(W, t), and his payoff is then w.

(ii) Conversely, if the concavity condition (2.10) fails, then there exist A∗ := a(W, t) and
P ∗ := p(W, t) such that A∗ is not optimal for the agent.

Assertion (i) is a form of Sannikov’s optimality condition for agent.

Proof. 1. Let A denote any admissible control for the agent. Since dX = Adt+ dB, we have

dW = (−rα(A∗, P ∗) + Y ∗(A− A∗))dt+ Y ∗dB.

Integrate:

W (T )− w =

∫ T

0

−rα(A∗, P ∗) + Y ∗(A− A∗) dt+

∫ T

0

Y ∗ dB.

We now take expected values and rewrite, recalling that Y ∗ = y(A∗, P ∗) = −rαa (A∗, P ∗):

w = E

(∫ T

0

rα(A,P ∗) dt+R∗
)

+ E

(∫ T

0

rα(A∗, P ∗) + rαa (A∗, P ∗)(A− A∗)− rα(A,P ∗) dt

)
. (2.11)
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2. When (2.10) holds, the concavity of rα in the variable a implies that the last term in
(2.11) is nonnegative, and is zero for A = A∗ = a(W, t). Therefore

Jα[A∗, P ∗, R∗] = E

(∫ T

0

rα(A∗, P ∗) dt+R∗
)

= w

≥ E

(∫ T

0

rα(A,P ∗) dt+R∗
)

= Jα[A,P ∗, R∗]

for any other admissible control A the agent may employ. Consequently, the agent’s incentive
condition (2.5) holds.

3. If the concavity assumption (2.10) fails, then for appropriate A∗ and P ∗ the agent can
select an action A for which

E

(∫ T

0

rα(A∗, P ∗) + rαa (A∗, P ∗)(A− A∗)− rα(A,P ∗) dt

)
< 0;

in which case
Jα[A∗, P ∗, R∗] = w < Jα[A,P ∗, R∗].

This easy proof makes obvious the necessity of the concavity condition (2.10). Most of
the rest of our paper consists of straightforward extensions of the foregoing argument.

Remarks. (i) In this first, simple model it is possible thatW (T ) is negative; in which case
we are assuming that the principal can extract from the agent a payment of size −W (T ) > 0.

(ii) If we make any other choice of Y ∗ in the dynamics (2.7) for W , the analog of the last
term of (2.11) would read

E

(∫ T

0

rα(A∗, P ∗)− Y ∗(A− A∗)− rα(A,P ∗) dt

)
.

If Y ∗ were not as defined in (2.6), (2.8), we could make this expression negative for a suitable
choice of A, and thus A∗ would not be optimal for the agent.

2.3 Optimality for the principal. The principal’s value function u = u(w, t) is

u(w, t) = sup
A,P,R

Jπ[A,P,R], (2.12)
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where w ∈ R, 0 ≤ t ≤ T ,{
dW = −(rα(A∗, P ∗) + Y ∗A∗)ds+ Y ∗dX (t ≤ s ≤ T )

W (t) = w,
(2.13)

and A,P,R satisfy the analogs of (2.4), (2.5).

THEOREM 2.2. The principal’s value function solves the Hamilton–Jacobi–Bellman (HJB)
equation{

ut + supa,p
{

1
2
(rαa (a, p))2uww − rα(a, p)uw + rπ(a, p)

}
= 0 on R× [0, T )

u = q on R× {t = T}
(2.14)

Note that for this particular problem the value function does not depend upon the initial
position x of X. The principal selects functions a = a(w, t), p = p(w, t) giving the max in the
HJB equation and then sets A∗ := a(W, t), P ∗ := p(W, t), R∗ = W (T ) as above. (Note very
carefully that we are making the strong assumptions (i) that the terminal value problem
(2.14) has a sufficiently smooth solution u and (ii) that we can find sufficiently smooth
functions a and p that the SDE (2.7), (2.8) has a unique solution. For many examples
this need not be so, however, and we hope in future work to extend our methods to such
problems.)

Finally, the principal selects, if she can, a point w∗ ∈ R such that

u(w∗, 0) = max
R

u(w, 0) (2.15)

to use as the initial condition for the dynamics (2.7):{
dW ∗ = −(rα(A∗, P ∗) + Y ∗A∗)dt+ Y ∗dX (0 ≤ t ≤ T )

W ∗(0) = w∗.

Then
Jπ[A∗, P ∗, R∗] = u(w∗, 0), Jα[A∗, P ∗, R∗] = w∗.

We describe the agent’s HJB equation in Appendix 1 and discuss more about optimality
in Appendix 2.

2.4 What if a 7→ rα is not concave? As noted above, if a 7→ rα(a, p) is not concave,
then for some choices of A∗ and P ∗ it will be possible for the agent to select A for which the
last term in (2.11) is negative. In this situation A∗ is not optimal for the agent.

But even in this setting it is still possible for the principal to incentivize the agent to
perform certain actions A∗. To see this, let

r̄α(·, p)
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denote the concave envelope of rα(·, p) for each value of p, the smallest function concave in
a that is greater than or equal to rα(·, p). Write

Γ := {(a, p) | rα(a, p) = r̄α(a, p)} (2.16)

for the set where rα touches its concave envelope.

Assume for simplicity of exposition that r̄α is smooth and redefine

y(a, p) := −r̄αa (a, p). (2.17)

Given functions a(w, t) and p(w, t), we again solve the SDE (2.7), where

Y ∗ := y(A∗, P ∗)

for y now given by (2.17).

THEOREM 2.3. Assume the principal uses the control P ∗ and final payoff R∗ := W (T ),
as before. Suppose also

(A∗, P ∗) ∈ Γ almost surely. (2.18)

Then it is optimal for the agent to use the control A∗ = a(W, t).

Since the original probability measure and PA are mutually absolutely continuous, the
phrase “almost surely” above means with respect to either of these measures.

Proof. As in the proof of Theorem 2.1,

w = E

(∫ T

0

rα(A,P ∗) dt+R∗
)

+ E

(∫ T

0

rα(A∗, P ∗) + r̄αa (A∗, P ∗)(A− A∗)− rα(A,P ∗) dt

)
.

But rα(A∗, P ∗) = r̄α(A∗, P ∗), owing to (2.18), and therefore

rα(A∗, P ∗) + r̄αa (A∗, P ∗)(A− A∗) = r̄α(A∗, P ∗) + r̄αa (A∗, P ∗)(A− A∗)
≥ r̄α(A,P ∗) ≥ rα(A,P ∗).

Consequently, the last term above is nonnegative, and is zero for A = A∗; thus A∗ is optimal
for the agent.
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In this case the principal’s value function u = u(w, t) solves the modified HJB equation{
ut + sup(a,p)∈Γ

{
1
2
(rαa (a, p))2uww − rα(a, p)uw + rπ(a, p)

}
= 0 on R× [0, T )

u = q on R× {t = T}.

The additional proviso that (a, p) ∈ Γ diminishes the controls available to the principal,
as compared with those computed from the unconstrained HJB equation (2.14). Her value
function can therefore be no larger than that computed by solving (2.14), and may well be
smaller.

2.5 Individual rationality constraint for the agent. The model discussed above
is extremely simple, but is economically unrealistic in that the values of W may become
negative, at which point the agent has no incentive to continue with the contract. We in
this section modify the model to allow for possible early termination of the contract in this
eventuality.

We keep the same dynamics (2.1) for X, but now extend the controls available to the
principal to include an FX-adapted stopping time τ , at which the contract with the agent
ends: Jπ[A,P,R, τ ] := E

(∫ T∧τ
0

rπ(A,P ) dt+ q(R(T ∧ τ))
)

Jα[A,P,R, τ ] := E
(∫ T∧τ

0
rα(A,P ) dt+R(T ∧ τ)

)
.

(2.19)

In these expressions ∧ means “min” and R now denotes a time-dependent termination payoff
to the agent. The dynamics for W are (2.7), as before. Now let

τ ∗ = first time W hits {w = 0}. (2.20)

and
R∗(T ∧ τ ∗) := W (T ∧ τ ∗). (2.21)

So the payoff R∗ is 0 if 0 ≤ τ ∗ ≤ T , that is, if the W process hits {w = 0} before the terminal
time T .

THEOREM 2.4. Assume the principal uses P ∗, R∗ and τ ∗, as above. Suppose also that
a 7→ rα(a, p) is concave for each p.

Then it is optimal for the agent to use the control A∗ = a(W, t), and his payoff is w.

Proof. The proof is as before, except that now we integrate to the time T ∧ τ ∗:

w = E

(∫ T∧τ∗

0

rα(A,P ∗) dt+R∗(T ∧ τ ∗)
)

+ E

(∫ T∧τ∗

0

rα(A∗, P ∗) + rαa (A∗, P ∗)(A− A∗)− rα(A,P ∗) dt

)
.
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By concavity, the last term is nonnegative, and is zero for A = A∗. Therefore

Jα[A∗, P ∗, R∗, τ ∗] = w ≥ Jα[A,P ∗, R∗, τ ∗].

THEOREM 2.5. The principal’s value function u = u(w, t) solves the HJB equation
ut + supa,p

{
1
2
(rαa (a, p))2uww − rα(a, p)uw + rπ(a, p)

}
= 0 on R+ × [0, T )

u = 0 on {w = 0} × [0, T )

u = q on R+ × {t = T}
(2.22)

Here R+ := [0,∞).

2.6 Individual rationality constraint for the principal. If his expected payoff w
is positive, then the agent has an incentive to accept the contract. But when should the
principal agree to this as well? Recall that the terminal value of the HJB equation (2.22) is
q, the negative of her cost of providing a concluding payout to the agent. Since it is therefore
reasonable to assume q(w) < 0 for w > 0, the principal’s value function u is nonpositive at
the terminal time T .

Can u be positive earlier in time? This depends on the size of the rπ, the running payoff
to the principal, versus the costs of hiring the agent, which depend upon rα and q. It is
generally too hard to solve the terminal value problem (2.22) explicitly, but we can in special
cases identify sufficient, but far from optimal, conditions ensuring that the principal’s value
function is positive somewhere, provided T > 0 is large enough:

THEOREM 2.6. Suppose there exists constants â, ĉ such that

rα(â, ĉ) = 0, rαa (â, ĉ) 6= 0, rπ(â, ĉ) > 0. (2.23)

Assume also
q(w) ≥ −C(1 + w) (w ≥ 0) (2.24)

for some constant C ≥ 0.
Then for T sufficiently large, we have

max
R+

u(w, 0) > 0. (2.25)

To maximize her expected return, the principal should therefore select as the initial
condition for the SDE (2.7) a point w∗ ∈ R+ for which

u(w∗, 0) = sup
R+

u(w, 0).
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Proof. 1. Write σ := rαa (â, ĉ) and ρ := rπ(â, ĉ) > 0 and set

Φ(w, t) :=
1√

2πσ2t
e−

w2

2tσ2 .

We check that

v(w, t) := ρ

∫ t

0

∫ ∞
0

Φ(w − x, s)− Φ(w + x, s) dxds

+

∫ ∞
0

[Φ(w − x, t)− Φ(w + x, t)]q(x) dx

solves the initial/boundary value problem
vt = 1

2
σ2uww + ρ on R+ × (0, T ]

v = 0 on {w = 0} × [0, T )

v = q on R+ × {t = 0}.
(2.26)

Since the principal’s value function u solves (2.22), the maximum principle implies

u(w, t) ≥ v(w, T − t) (w ≥ 0, 0 ≤ t ≤ T ).

Then (2.25) will follow, provided
sup
R+

v(w, T ) > 0. (2.27)

2. To show this, note first that

vw(0, T ) := ρ

∫ T

0

∫ ∞
0

Φw(−x, s)− Φw(x, s) dxds

+

∫ ∞
0

[Φw(−x, T )− Φw(x, T )]q(x) dx =: A+B.

Using (2.24), we calculate that

A ≥ C1ρT
1
2 , B ≥ −C2

for appropriate constants C1, C2 > 0. Consequently vw(0, T ) > 0 if T is large enough; and
this gives (2.27).
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3 Generalizations

We now generalize, moving to higher dimensions, adding dependence on the spatial variable
x and considering more general payoffs and dynamics.

3.1 More complicated dynamics and payoffs. We now allow X to be higher dimen-
sional and, more significantly, assume general drift and the noise terms, that are possibly
nonlinear in the agent’s effort A and the state X:{

dX = f(X,A)dt+ σ(X,A)dB (0 ≤ t ≤ T )

X(0) = x.
(3.1)

Now B is a standard n-dimensional Brownian motion. Here we assume X takes values in
Rn, the controls A take values in Rm, the controls P take values in Rl and

f : Rn × Rm → Rn, σ : Rn × Rm →Mn×n,

where Mn×n denotes the space of real, n× n matrices. We write σ = σ(x, a) = ((σij)).

The payoffs have the same form as earlier:Jπ[A,P,R] = E
(∫ T

0
rπ(X,A, P ) dt+ q(X(T ), R)

)
Jα[A,P,R] = E

(∫ T
0
rα(X,A, P ) dt+R

)
,

(3.2)

where
rπ, rα : Rn × Rm × Rl → R.

3.2 Concavity hypothesis. Our goal is to design the dynamics W to be used in the
compensation scheme for the agent. Given some particular suggested effort A∗, we again
need to find a way to ensure that A∗ is optimal for the agent. To accomplish this we will need
to assume for rα an appropriate concavity condition that is compatible with the dynamics
(3.1).

Definition. Assume g : Rm → Rn. We say that a function ψ : Rm → R is g-concave if
there exists a concave function φ : Rn → R such that

ψ(a) = φ(g(a)) (a ∈ Rm). (3.3)

In other words, ψ is g-concave if it is a concave function of the new variables ã = g(a).

We hereafter assume for each x and p that

a 7→ rα(x, a, p) is f(x, a)-concave. (3.4)

11



We can therefore write

rα(x, a, p) = φ(x, f(x, a), p) (x ∈ Rn, a ∈ Rm)

where s 7→ φ(x, s, p) is concave, and we assume for simplicity that φ is smooth. Then if we
define

y(x, a, p) := −Dsφ(x, f(x, a), p), (3.5)

the concavity of φ implies

rα(x, a, p)− y · (f(x, â)− f(x, a)) ≥ rα(x, â, p) (3.6)

for all x, a, â, p.

3.3 A contract. Given smooth, deterministic functions a = a(x,w, t) and p = p(x,w, t),
we solve the SDE{

dW = (−rα(X,A∗, P ∗)− f(X,A∗) · Y ∗)dt+ Y ∗ · dX (0 ≤ t ≤ T )

W (0) = w
(3.7)

for
A∗ = a(X,W, t), P ∗ = p(X,W, t), Y ∗ := y(X,A∗, P ∗), (3.8)

the function y defined by (3.5).

The principal can compute W = WA in terms of the observed values of X = XA; both
depend upon the agent’s choice of control A. The principal agrees to pay the agent at the
rate P ∗(t) = p(X(t),W (t), t) for 0 ≤ t < T . In addition she provides the final payout

R∗ = W (T ).

We identify next circumstances under which it is optimal for the agent to select A =
A∗ = a(X,W, t):

THEOREM 3.1. Suppose for each x and p that

a 7→ rα(x, a, p) is f(x, a)-concave.

Then it is optimal for the agent to use the control A∗ = a(X,W, t).

Proof. Let A be any control for the agent. Then since

dX = f(X,A)dt+ σ(X,A)dB,

we have

dW = (−rα(X,A∗, P ∗) + Y ∗ · (f(X,A)− f(X,A∗)))dt+ Y ∗ · σ(X,A)dB.
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Integrate, to find

W (T )− w =

∫ T

0

−rα(X,A∗, P ∗) + Y ∗ · (f(X,A)− f(X,A∗)) dt+

∫ T

0

Y ∗ · σ(X,A) dB.

Take expected values and rewrite:

w = E

(∫ T

0

rα(X,A, P ∗) dt+R∗
)

+ E

(∫ T

0

rα(X,A∗, P ∗)− y(X,A∗, P ∗) · (f(X,A)− f(X,A∗))− rα(X,A, P ∗) dt

)
.

According to (3.6), the last term is nonnegative, and is zero for A = A∗. Therefore

Jα[A∗, P ∗, R∗] = E

(∫ T

0

rα(X,A∗, P ∗) dt+R∗
)

= w

≥ E

(∫ T

0

rα(X,A, P ∗) dt+R∗
)

= Jα[A,P ∗, R∗].

THEOREM 3.2. The principal’s value function u = u(x,w, t) solves the HJB equation
ut + supa,p{aij(x, a)uxixj + yj(x, a, p)σij(x, a)uxiw + |y(x,a,p)|2

2
uww

+f i(x, a)uxi − rα(x, a, p)uw + rπ(x, a, p)} = 0 on Rn+1 × [0, T )

u = q on Rn+1 × {t = T}
(3.9)

Here aij = 1
2
σikσjk and we recall that y = y(x, a, p) is defined by (3.5). We as before

assume that we can select smooth functions a = a(x,w, t), p = p(x,w, t) giving the supremum
in the HJB equation.

3.4 How to do better when the noise term depends on A. We consider now
explicitly the case that σ = σ(x, a) truly depends on a; that is, the agent’s actions affect the
noise term σ(X,A)dB in the SDE (3.1). In this case, more information is available to the
principal, at least in this highly idealized model, and she can then design a contract that
may be better for her than that discussed above.

To see this, note that if Φ : Rn → R, then Itô’s formula gives

d(Φ(X)) = ΦxidX
i +

1

2
Φxixjσ

ikσjkdt.
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As X, and consequently Φ(X), are observable to the principal, so therefore is σTσ(X,A).
The principal can therefore enforce the additional contractural requirement of the agent that
his effort A satisfy

σTσ(X,A) = σTσ(X,A∗) (0 ≤ t ≤ T ), (3.10)

where A∗ is the suggested control for the agent, as determined below.

To see the advantage to the principal of this information, consider the following new
contract. First define

Λ(x, a, p) := {y ∈ Rn | rα(x, a, p)− y · (f(x, â)− f(x, a)) ≥ rα(x, â, p)

for all â ∈ Rm such that σTσ(x, â) = σTσ(x, a)}.
(3.11)

Then Λ(x, a, p) is a closed, convex (but possibly empty) set.

Consider now the new HJB equation
ũt + supa,p,y{aij(x, a, p)ũxixj + yjσij(x, a, p)ũxiw + |y|2

2
ũww + f i(x, a)ũxi

−rα(x, a, p)ũw + rπ(x, a, p)} = 0 on Rn+1 × [0, T )

ũ = q on Rn+1 × {t = T},
(3.12)

where now the variable y over which we take the supremum is subject to the requirement
that

y ∈ Λ(x, a, p). (3.13)

Assuming that we can find smooth enough functions a = a(x,w, t), p = p(x,w, t) and
y = y(x,w, t) giving the max in (3.12), the principal can solve the new SDE{

dW = (−rα(X,A∗, P ∗)− f(X,A∗) · Y ∗)dt+ Y ∗dX (0 ≤ t ≤ T )

W (0) = w,
(3.14)

now for
A∗ := a(X,W, t), P ∗ := p(X,W, t), Y ∗ := y(X,W, t). (3.15)

She then makes the contract of paying the agent at the rate P ∗(t) = p(X,W, t) and also
paying him the terminal amount R∗ = W (T ), provided that she observes that his actions
satisfy

σTσ(X,A) = σTσ(X,A∗) (0 ≤ t ≤ T ) (3.16)

where A∗ = a(X,W, t). If the agent’s actions do not conform to this constraint, he has
violated the contract.
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THEOREM 3.3. Assume the principal uses the control P ∗ and final payoff R∗, as just
described.

(i) It is then optimal for the agent to use the control A∗ = a(X,W, t), and his payoff is
w.

(ii) Assume for each x and p that a 7→ rα(x, a, p) is f(x, a)-concave. Suppose that u is
the agent’s value function for the contract described in Section 3.4 and ũ is the agent’s value
function for the contract described above.

Then
ũ ≥ u on Rn × R× [0, T ]. (3.17)

Thus the principal can use her observations of σTσ(X,A) to come up with a contract
that is no more unfavorable, and is perhaps better, to her than that discussed in Section 3.4.

Proof. 1. The proof of the optimality to the agent of the control A∗ = a(X,W, t), among all
others satisfying (3.16), follows by the usual argument.

2. If rα(x, a, p) is f -concave in the variable a, the function y = y(x, p, a) defined by (3.5)
belongs to the set Λ(x, a, p). Hence the supremum in the HJB equation (3.12) for ũ is over
a set that is no smaller than the set over which the sup is computed for the HJB equation
(3.9) for u. Therefore the maximum principle implies ũ ≥ u.

4 Many agents

We show next how a single principal can optimally arrange compensation for a collection of
N agents, provided they do not collude with each other. For simplicity, we assume that the
various agents’ actions do not affect the noise in the dynamics.

4.1 Notation, dynamics and payoffs with many agents. The evolution of X is the
same as before: {

dX = f(X,A)dt+ σ(X)dB (0 ≤ t ≤ T )

X(0) = x,
(4.1)

except that now A = (A1, A2, . . . , AN), where Ak is the control exercised by the k-th agent
for k = 1, . . . , N . So A take values in RmN and the dynamics (4.1) depend upon all the
agents’ control choices:

f : Rn × RmN → Rn, σ : Rn ×RmN →Mn×n

NOTATION. We will write

a = (a1, a2, . . . , aN) ∈ RmN , p = (p1, p2, . . . , pN) ∈ RlN
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where ak ∈ Rm and ak ∈ Rl for k = 1, . . . , N . Likewise

A = (A1, A2, . . . , AN), P = (P 1, P 2, . . . , PN),

where Ak is the control of the k-th agent and P k is his running compensation. We also use
the convenient notation

a−k := (a1, . . . , ak−1, ak+1, . . . aN)

(a−k, b
k) := (a1, a2, . . . , bk, . . . aN).

In other words, we obtain (a−k, b
k) by substituting bk for ak in a = (a1, a2, . . . , aN).

There are now many payoff functionals, one for the single principal and one for each of
the N agents: Jπ[A,P,R] = E

(∫ T
0
rπ(X,A, P ) dt+ q(X(T ), R)

)
Jkα[A,P,Rk] = E

(∫ T
0
rαk (X,A, P ) dt+Rk

)
(k = 1, . . . , N)

Here Rk is the payoff to the k-th agent at the terminal time T , R = (R1, R2, . . . , RN), and
rπ, rαk are running costs, where

rπ, rαk : Rn × RmN × RlN → R (k = 1, . . . , N).

4.2 Concavity hypothesis. We assume for each x, p and a−k that

ak 7→ rαk (x, a, p) is f(x, a)-concave (k = 1, . . . , N).

As in the previous section, it follows that for k = 1, . . . , N there exists a function
yk(x, a, p) such that

rαk (x, a, p) ≤ rαk (x, a∗, c)− yk(x, a∗, c) · (f(x, a)− f(x, a∗)) (4.2)

for all x, a∗, c and
a = (a∗−k, a

k).

4.3 The contracts. Given functions a = a(x,w, t) = (a1(x,w, t), . . . , aN(x,w, t)) and
p = p(x,w, t) = (c1(x,w, t), . . . , cN(x,w, t)), we solve the system of SDE{

dWk = (−rαk (X,A∗, P ∗)− f(X,A∗)Y ∗k )dt+ Y ∗k dX (0 ≤ t ≤ T )

Wk(0) = wk.

We use the notation W = (W1, . . . ,WN).

The principal agrees to pay the k-th agent at the rate P ∗k = pk(X,W, t) for times 0 ≤ t <
T , depending upon the values of W , which she can compute in terms of the observed values
of X. In addition the principal provides the final payout

R∗k = Wk(T ).
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THEOREM 4.1 (Feedback Nash equilibrium for the agents). Under the above assumptions,
it is optimal for the k-th agent to use the control

A∗k = ak(X,W, t),

assuming that each of the other agents j uses the corresponding control A∗j for j = 1, . . . , k−
1, k + 1, . . . N .

In other words, A∗ = (A∗1, . . . , A∗N) is a Nash equilibrium for the agents.

Proof. Let Ak be any control for agent k. Then

dWk = (−rαk (X,A∗, P ∗)− f(X,A∗)Y ∗k )dt+ Y ∗k dX

= (−rαk (X,A∗, P ∗) + Y ∗k · (f(X,Ak)− f(X,A∗)))dt+ Y ∗k · σdB,

where Ak := (A∗−k, A
k). Then

Wk(T )− wk =

∫ T

0

−rαk (X,A∗, P ∗) + Y ∗k · (f(X,Ak)− f(X,A∗)) dt+

∫ T

0

Y ∗k · σdB,

and thus

wk = E

(∫ T

0

rαk (X,A, P ∗) dt+R∗k
)

+ E

(∫ T

0

rαk (X,A∗, P ∗)− rαk (X,Ak, P
∗) + yk(X,A

∗, P ∗) · (f(X,Ak)− f(X,A∗)) dt

)
.

According to (4.2), the last term is nonnegative, and is zero for Ak = A∗k. Therefore

Jkα[A∗−k, A
∗k, P ∗, R∗k] = Jkα[A∗, P ∗, R∗k]

= E

(∫ T

0

rαk (X,A∗, P ∗) dt+R∗k
)

= wk

≥ E

(∫ T

0

rαk (X,Ak, P
∗) dt+R∗k

)
= Jkα[Ak, P

∗, R∗k]

= Jkα[A∗−k, A
k, P ∗, R∗k].

Therefore, so long as the other agents stick with the controls

A∗−k = (A∗1, . . . , A∗(k−1), A∗(k+1), . . . , A∗N),

it is optimal for the k-th agent to employ A∗k.
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Write
rα(x, a, p) = (rα1 (x, a, p), . . . , rαN(x, a, p)).

THEOREM 4.2. The principal’s value function u = u(x,w, t) solves the HJB equation
ut + supa,p{aijuxixj + yik(x, a, p)σ

ij(x)uxjwk + 1
2
yil(x, a, p)y

i
k(x, a, p)uwkwl

+f i(x, a)uxi − rαk (x, a, p)uwk + rπ(x, a, p)} = 0 on Rn+N × [0, T )

u = q on Rn+N × {t = T}.

5 Appendix 1: The agent’s value function and his HJB

equation

We have several times above studied the principal’s value function and her HJB equation, and
it therefore seems natural to discuss as well the agent’s value function and his HJB equation.
This analysis provides an alternative (but somewhat more complicated) derivation of the
agent’s optimality condition, Theorem 2.1.

We start by generalizing slightly and assuming the initial time is some given t ∈ [0, T ],
and not necessarily t = 0 as in the previous sections. The dynamics for W are{

dW = (−rα(A∗, P ∗)− Y ∗A∗)ds+ Y ∗dX (t ≤ s ≤ T )

W (t) = w.
(5.1)

Below we write a∗ = a(w, t) and p∗ = p(w, t) to denote functions giving the supremum
in the principal’s HJB (2.14).

THEOREM 5.1. If a 7→ rα is concave, the agent’s value function is

v(w, t) ≡ w. (5.2)

Proof. The agent’s value function v = v(w, t) solves the agent’s HJB equation
vt + supa{1

2
(rαa (a∗, p∗))2vww − (a− a∗)rαa (a∗, p∗)vw

−rα(a∗, p∗)vw + rα(a, p∗)} = 0 on R× [0, T )

v = w on R× {t = T}

We claim that when a 7→ rα is concave, a solution is given by (5.2) and that the supremum
occurs at a = a∗. To confirm this, let v ≡ w above, and check that

vt + sup
a
{1

2
(rαa (a∗, p∗))2vww − (a− a∗)rαa (a∗, p∗)vw − rα(a∗, p∗)vw + rα(a, p∗)}

= sup
a
{rα(a, p∗)− (rα(a∗, p∗) + rαa (a∗, p∗)(a− a∗))}

= 0.
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And v(w, t) ≡ w satisfies the correct terminal condition on R × {t = T}. By uniqueness,
therefore, the agent’s value function equals w.

6 Appendix 2: Better contracts?

We address in this section the subtle question of the actual optimality of the contract devised
in Section 2, and, in particular, reproduce and comment upon Sannikov’s formulation [S].

To begin, let us suppose that the triple (Â, P̂ , R̂) is given, the process Â being F -adapted.
We regard (Â, P̂ , R̂) as a proposed contract offered by the principal, where Â is the suggested
effort for the agent. We define then the process{

dX = Âdt+ dB (0 ≤ t ≤ T )

X(0) = x,
(6.1)

and assume as well that
P̂ , R̂ are FX-adapted. (6.2)

Assume instead that the agent’s effort is really the process A, although he can claim that
in fact dX = Âdt+ dB. We then understand the evolution of the observed process X as{

dX = Âdt+ dB = Adt+ dBA (0 ≤ t ≤ T )

X(0) = x,
(6.3)

for

BA(t) :=

∫ t

0

Â− Ads+B(t) (0 ≤ t ≤ T ).

We can invoke Girsanov’s Theorem to secure a new probability measure PA = PA,Â under
which BA is a Brownian motion. Let us then redefine the payoffs (2.2), now to readJπ[A, P̂ , R̂] := EA

(∫ T
0
rπ(A, P̂ ) dt+ q(R̂)

)
Jα[A, P̂ , R̂] := EA

(∫ T
0
rα(A, P̂ ) dt+ R̂

)
,

(6.4)

where EA denotes expectation with respect to PA. Note carefully that these payoffs therefore
also depend upon Â.

We assume further that Â is incentive compatible for the agent, in the sense that

Jα[Â, P̂ , R̂] = max
A

Jα[A, P̂ , R̂], (6.5)
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where A is F -adapted. We call the triple (Â, P̂ , R̂) admissible if (6.2) and (6.5) hold.

Finally, let (A∗, P ∗, R∗) be the contract designed in Section 2. The following theorem
describes the sense in which this proposed contract is optimal for the principal:

THEOREM 6.1. (i) Assume that

a 7→ rα(a, p) is concave for each p.

Then we have the agent’s optimality condition

Jα[A∗, P ∗, R∗] = max
A

Jα[A,P ∗, R∗], (6.6)

for the payoff Jα defined by (6.4). Consequently, (A∗, P ∗, R∗) is admissible.

(ii) If furthermore (Â, P̂ , R̂) is any other admissible contract, then

Jπ[Â, P̂ , R̂] ≤ Jπ[A∗, P ∗, R∗], (6.7)

for Jπ defined by (6.4).

Proof. 1. The proof of (6.6) is almost exactly like the proof of Theorem 2.1. Let PA = PA,A∗

now denote the measure for which

BA(t) :=

∫ t

0

A∗ − Ads+B(t) (0 ≤ t ≤ T ).

is a Brownian motion. Define the process W by (2.7). We compute

W (T )− w =

∫ T

0

−rα(A∗, P ∗) + Y ∗(A− A∗) dt+

∫ T

0

Y ∗ dBA,

where Y ∗ = −rαa (A∗, P ∗). Take expected values, but now with respect to the new measure
PA:

w = EA

(∫ T

0

rα(A,P ∗) dt+R∗
)

+ EA

(∫ T

0

rα(A∗, P ∗) + rαa (A∗, P ∗)(A− A∗)− rα(A,P ∗) dt

)
.

By concavity, it follows as before that w = Jα[A∗, P ∗, R∗] ≥ Jα[A,P ∗, R∗].

2 . To prove (6.7), take (Â, P̂ , R̂) to be any admissible contract. We follow Sannikov and
define

Ŵ (t) := E

(∫ T

t

rα(Â, P̂ ) ds+ R̂ | F(t)

)
(0 ≤ t ≤ T ).

20



In particular, Ŵ (T ) = R̂. Then

Ŵ (t) +

∫ t

0

rα(Â, P̂ ) ds = E

(∫ T

0

rα(Â, P̂ ) ds+ R̂ | F(t)

)
,

the right hand side of which is an F martingale. According therefore to the Martingale
Representation Theorem (see Karatzas–Shreve [K-S]), there exists an F -adapted process Ŷ
such that

Ŵ (t) +

∫ t

0

rα(Â, P̂ ) ds = Ŵ (0) +

∫ t

0

Ŷ dB (0 ≤ t ≤ T ). (6.8)

3. Put

ŵ := Ŵ (0) = E

(∫ T

0

rα(Â, P̂ ) ds+ R̂

)
= Jα[Â, P̂ , R̂];

note that ŵ is a number, since F(0) is the trivial σ-algebra.

4. We now claim that
Ŷ = −rαa (Â, P̂ ) almost surely. (6.9)

To see this, let A be any other agent effort and observe from (6.8) that

dŴ = −rα(Â, P̂ )dt+ Ŷ dB = (−rα(Â, P̂ ) + Ŷ (A− Â))dt+ Ŷ dBA.

We integrate and take expected values with respect to PA = PA,Â, to find

ŵ = Ŵ (0) = EA
(∫ T

0

rα(A, P̂ )dt+ R̂

)
+ EA

(∫ T

0

rα(Â, P̂ )− rα(A, P̂ ) + Ŷ (Â− A) dt

)
.

Now if (6.9) were false, there would exist A such that the second term on the right is negative.
It would then follow that

Jα[A, P̂ , R̂] > ŵ = Jα[Â, P̂ , R̂], (6.10)

a contradiction to the admissibility condition (6.5).

4. In view of the foregoing, we have{
dŴ = −(rα(Â, P̂ ) + Ŷ Â)dt+ Ŷ dX (0 ≤ t ≤ T )

Ŵ (0) = ŵ,
(6.11)

where Ŷ = −rαa (Â, P̂ ) and Ŵ (T ) = R̂. These are the same as dynamics (2.7) for the process
W , except for the initial condition. Consequently,

Jπ[A∗, P ∗, R∗] = u(w∗, 0) ≥ u(ŵ, 0) ≥ Jπ[Â, P̂ , R̂].

where the principal’s value function u solves the principal’s HJB equation (2.14) and w∗

verifies (2.15).

21



References

[C-P-T] J. Cvitanic, D. Possamai and N. Touzi, Dynamic programming approach to
principal-agent problems, arXiv:1510.07111

[C-Z] J. Cvitanic and J. Zhang, Contract Theory in Continuous Time Models, Springer,
2013.

[E] I. Ekeland, How to build stable relationships with people who lie and cheat, Milan
Journal of Mathematics 82 (2014), 67–79.

[K-S] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts
in Mathematics 113, Springer, 1988

[M-Y] C. Miller and I. Yang, Optimal dynamic contracts for a large-scale principal-agent
hierarchy: a concavity-preserving approach, arXiv:1506.05497 [math.OC] (2015).

[S] Y. Sannikov, A continuous time version of the principal-agent problem, Review of
Economic Studies 75 (2008), 957–984.

22


