Proposition: Lex is a monomial ordering on $\mathbb{N}^{n}=\mathbb{Z}_{\geq 0}^{n}$.
Proof(scetch):

- Total ordering since we compare entry wise and \mathbb{N} is totally ordered
- If α Zen $\beta \Rightarrow$ left most non-zero entry of

$$
\begin{aligned}
& \alpha-\beta \Rightarrow s_{y} \quad \alpha_{i}-\beta_{i}>0 \\
& \alpha+\gamma>\beta+\gamma \quad \forall \gamma \\
& (\alpha+\gamma)-(\beta+\gamma)> \\
& \quad \alpha-\beta \\
& \therefore \alpha_{i}-\beta_{i}>0
\end{aligned}
$$

- well ordering also follows frow N being well ordered suppose

$$
\alpha(1)>_{\text {lex }} \alpha(2)>_{\text {lex }} \ldots \text { was infuitly deceasing }
$$

Since we entry w rise the sequence myst stabilize In $\| / \therefore$ there could be no such sequence

Note: in Lex

$$
\begin{aligned}
& x>y>z \\
& x \partial_{\text {lex }} y^{5} z^{3} \quad, \quad y^{2}>y z^{277}
\end{aligned}
$$

Graded Lex Order $=$ grlex

$$
\alpha, \beta \in \mathbb{N}^{n}
$$

$\alpha \underset{\text { grtex }}{ } \beta$ if

$$
\begin{aligned}
& |\alpha|=\sum_{i=1}^{n} \alpha_{i} \supset|\beta|=\sum_{i=1}^{n} O R \quad|\alpha|=|\beta| \\
& {\left[\begin{array}{c}
\text {. Check total degree } \\
\text { - Beak tie with lex }
\end{array}\right]} \\
& (2,2,3) \sum_{\text {grlex }}(1,3,4) \\
& x^{2} y^{2} z^{3} \\
& (2,1,3) \\
& x^{2} y z^{3} \\
& L_{\text {grkex }} \\
& (2,2,2) \\
& \text { Since } \\
& (2,2,3)-(2,1,3) \\
& x^{2} y^{2} z^{2} \\
& =(0,1,-1) \text {. }
\end{aligned}
$$

Graded Reverse Lex order = gre Vex
$\alpha>\beta$ if
$|\alpha|=\sum \alpha_{i}>|\beta|=\sum \beta_{i} \quad O R \quad|\alpha|=|\beta|$ and right most montero entry is negative.

$$
\begin{array}{ccc}
(2,4,3) & {\underset{\text { grevlex }}{ }}^{(1,5,3)} & (2,4,3)-(1,5,3) \\
x^{2} y^{4} z^{3} & x y^{5} z^{3} & =(1,-1,0)
\end{array}
$$

Def's $f=\sum_{\alpha} a_{\alpha} x^{\alpha} \in K\left[x_{1, \cdots, y}\right]$, \supset a monomialorder

$$
\text { - multidguree(f) }=\max \left(\alpha \in \mathbb{N}^{n} \mid a_{\alpha} \neq 0\right)
$$

$$
\operatorname{multidgrvee}(g)=(3,0,0)
$$

- Leading coefficent

$$
\begin{gathered}
L C(f)=a_{\text {multideg }}(f) \in K \\
L(C g)=-5
\end{gathered}
$$

$$
\operatorname{Lm}(g)=x^{3}
$$

- Leacting ferm $=L((f) \cdot L M(f)$

$$
\text { i.e. } L T(g)=-5 x^{3}
$$

Lemma $f, g^{\neq O} \in K\left[x_{1}, \ldots, x_{n}\right]$

- multidegree $(f \cdot g)=$ multideguee $(f)+\operatorname{multidegnee}(g)$
- $f+g \neq 0$ then

$$
\begin{aligned}
\text { multidegree }(f+g) & \leq \max (\text { multidagnee }(f) \text {, maltidg }(g)) \\
& { }_{i f} \text { multideg }(f) \neq \text { maltideg }(g) \\
f=x^{2}+y z \quad g & =-x^{2}+y^{2}+z \quad f+y=
\end{aligned}
$$

Division Alg. in $k[x$

$$
\begin{aligned}
& x y^{2}+x+y^{2}=\hat{f} \\
& -\left(f_{1} \cdot \frac{L T(\xi)}{L T(f)}\right) \\
& x \cdot y^{2}+x+y^{2}=\tilde{f} \\
& -\left(x y^{2}-y\right) \\
& x+y^{2}+y=p \\
& L T\left(f_{1}\right)=x y, L T\left(f_{2}\right)=y^{2}, \frac{\text { do not }}{n^{\text {nemaindor }}} \text { divite } \operatorname{LT}(p)=x \\
& \therefore \text { put LT(P) in } r^{4^{\text {nematindor }}} \\
& r: x \\
& \text { proceded } \\
& \hat{p}=y^{2}+y
\end{aligned}
$$

