Ideal of a Variety

Let $U \leq k^{n}$

$$
\rightarrow I(V)=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right] \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \quad \forall\left(a_{1}, \ldots, a_{n}\right) \in V\right\}
$$

Lemma l If $V \subseteq K^{n}$ is an affine variety then $I(V) \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal
Proof: $\quad 0 \in I(U)$
Let $f, g \in I(U), h \in K\left[x_{1}, \cdots x_{n}\right], a=\left(a, y a_{n}\right) \in V$

$$
f(a)+g(a)=\sigma+0=0
$$

$h(a) f(a)=h(a) \cdot 0=0 \quad \therefore \quad I(U)$ is an ideal.

$$
I(\{(0,0)\})=(x, y)
$$

- Note $f(0,0)=0 \Rightarrow$ constant term of fisc

$$
\begin{aligned}
& f \in(x, y) \\
& x-1 \notin(x, y)
\end{aligned}
$$

[-x]
(When K is infinite)

$$
\begin{aligned}
& I\left(K^{n}\right)=\{0\} \\
& \epsilon K\left[x_{1}, \ldots, x_{n}\right]
\end{aligned}
$$

$Q: \quad I\left(U\left(f_{1}, \ldots, f_{5}\right)\right) \stackrel{?}{=}\left(f_{1}, \ldots, f_{5}\right)$?
A: NO , not nossicurily.

Lemma l Let $f_{1}, \ldots, f_{s} \in K\left[x_{1}, \ldots, x_{n}\right]$. Then $\left(f_{1}, \ldots, f_{s}\right) \subseteq I\left(V\left(f_{1}, \ldots, f_{s}\right)\right)$, equality need not occur.

Proof:

$$
f \in\left(f_{1}, \ldots, f_{s}\right) \ni f=\sum_{i=1}^{s} h_{i} f_{i} \quad, h_{i} \in K\left[k_{1}, \ldots, t_{n}\right]
$$

$f_{1, \ldots}, f_{5}$ all vanish on $V\left(f_{1, \ldots}, f_{5}\right) \therefore f$ does as wall

$$
\begin{aligned}
& \therefore f \in I\left(U\left(f_{1}, \ldots, f_{5}\right)\right) \\
& \left(f_{1}, \ldots, f_{s}\right) \leq I\left(U\left(f_{1}, \ldots, f_{s}\right)\right)
\end{aligned}
$$

For $2^{\text {nd }}$ part find an example
Shew $\quad\left(x^{2}, y^{2}\right) \& I\left(U\left(x^{2}, y^{2}\right)\right)$

$$
\begin{aligned}
& I\left(U\left(x^{2}, y^{2}\right)\right), x^{2}=y^{2}=0 \Rightarrow U\left(x^{2}, y^{2}\right)=\{(0,0)\} \\
& \quad I(\{(c, 0)\})=(x, y) \\
& \therefore I\left(U\left(x^{2}, y^{2}\right)\right)=(x, y)
\end{aligned}
$$

and $\quad x \in\left(x^{2}, y^{2}\right) \quad \therefore\left(x^{2}, y^{2}\right) \& I\left(U\left(x^{2}, y^{2}\right)\right)$.

Aside: take square root of each gen. of $\left(x^{2}, y^{2}\right)$
we ged $I\left(U\left(x^{2}, y^{2}\right)\right)$.

Prop] Let $V, W \in K^{n}$ be a ff. vevietres
$(a): V \leq W$ if $I(U) \supseteq I(w)$
(b): $V=W$ if $I(U)=I(u)$

Proof: suppose $V \leqslant W \Rightarrow$ if a poly. vanishes on W it also vanishes on $V \Rightarrow I(W) \leq I(U)$
say $\quad w=V\left(g_{1}, \ldots, g_{t}\right)$

$$
\Rightarrow \quad g_{1}, \ldots, g_{t} \in I(w) \subseteq I(v)
$$

\therefore gi's vanish on V, i-e. any $v \in V$ is in U since $w i s$ all common zeros of gilngt

$$
\therefore \quad V \leq W
$$

(b) Follows since $v=w \Leftrightarrow V \geq W$ and $V \leq w$

Q's:

- I deal description: can we write all $I \leq K\left[x_{1,-1} x_{n}\right]$ as $I=\left(f_{6}, \ldots, f_{s}\right)$? Yes.
- membership: $f \in\left(\xi_{1}, \ldots, f_{5}\right)$?
- Nullstellen sate: Relationship between ($f_{1,} \cdots, f_{3}$) and $I\left(U\left(f_{1}, \cdots, f_{5}\right)\right)$
poly. of ane var.

Def: $f \in k[x]$

$$
f=\underbrace{c_{0} x^{m}+c_{1} x^{m-1}+\cdots+c_{m}, c_{i} \in k} \text { Leading term } L T(f)=c_{0} x^{m}
$$

$$
c_{0} \neq 0 \text {, so } \operatorname{def}(f)=m
$$

$$
\begin{array}{ll}
\left.f=\begin{array}{ll}
7 x^{5}-4 x^{4}+8 & g=12 x^{6}-27 \\
L T(f)=7 x^{5} & L T(g)=12 x^{6} .
\end{array}\right] \\
& \Leftrightarrow \operatorname{deg}(f) \leq \operatorname{deg}(g) \Leftrightarrow L(f) \mid L T(g)
\end{array}
$$

Division Alg:
Prop: Let

