Problem 1. (15 points.) Let \(f(x) = x^3 + 11x^2 + 13x + 1 \) and let \(\mathbb{Q}[x] \) be the polynomial ring in \(x \) with rational coefficients. Consider the quotient ring \(R = \mathbb{Q}[x]/\langle f(x) \rangle \).

- Is \(R \) a field? Is \(R \) an integral domain? Prove your answers.

Solution: Yes, \(R \) is a field and, hence, also an integral domain.

Proof: We know from a theorem from class (Theorem 16.35 in Judson) that, for \(S \) a ring and \(I \) an ideal in \(S \), \(S/I \) is a field if and only if \(I \) is a maximal ideal. We also know from a theorem from class (Theorem 17.22 of Judson) that if \(F \) is a field, \(p(x) \in F[x] \), then \(\langle p(x) \rangle \) is maximal if and only if \(p(x) \) is irreducible over \(F \). Hence we may conclude that \(R = \mathbb{Q}[x]/\langle f(x) \rangle \) is a field if and only if \(f(x) \) is irreducible over \(\mathbb{Q} \).

Since \(f(x) = x^3 + 11x^2 + 13x + 1 \) has degree three it is reducible if and only if it has a linear factor, that is if and only if \(f(x) \) has a root in \(\mathbb{Q} \). A corollary of Gauss’s Lemma (Corollary 17.15 of Judson) tells us that if \(f(x) \) has a root in \(\mathbb{Q} \) it must have a root \(\alpha \) in \(\mathbb{Z} \), and further, that \(\alpha | 1 \), this would imply that \(\alpha = \pm 1 \). However \(f(1) = 26 \neq 0 \) and \(f(-1) = -2 \neq 0 \), therefore \(f(x) \) is irreducible over \(\mathbb{Q} \) and \(R = \mathbb{Q}[x]/\langle f(x) \rangle \) is a field (and hence an integral domain). ■