Subrings

A subring S of a ring R is a subset $S \subseteq R$ such that S is also a ring with operations on R.

Prop. Let R be a ring, S a subset of R. Then S is a subring of R if and only if the following are true,

1) $S \neq \emptyset$
2) $rs \in S \land r,s \in S$
3) $r-s \in S \land r,s \in S$

Ex. $R = 2 \times 2$ real matrices

$T = \{ (\begin{pmatrix} a & b \\ c & d \end{pmatrix}) \mid a,b,c,d \in \mathbb{R} \}$ is a subring.

- Non-empty
- $A \cdot B = (\begin{pmatrix} a & b \\ c & d \end{pmatrix})(\begin{pmatrix} e & f \\ g & h \end{pmatrix}) = (\begin{pmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{pmatrix})$
- $A-B \in T \land a,b \in T$

More on integral domains and fields

\text{commutative ring with no zero divisors}

Ex. $\mathbb{Z}[i] = \{ m+ni \mid m,n \in \mathbb{Z} \}$
This is a ring, also an integral domain [check]

\[(a + bi)(c + di) = 0\]

\[(ac - bd) + (bc + ad)i = 0\]

\[\Rightarrow ac = bd \quad \text{and} \quad bc = -ad\]

\[abc = b^2d \quad \text{and} \quad abc = -a^2d\]

\[\Rightarrow -a^2d = b^2d\]

\[\Rightarrow d = 0 \quad \text{or} \quad -a^2 = b^2 \quad \text{or} \quad a = b = 0\]

\[\therefore d = 0\]

with some checking \(\Rightarrow\) Either \(a = b = 0\) or \(c = d = 0\).

\[\therefore \mathbb{Z}[i] \text{ is an integral domain}\]

Show \(\mathbb{Z}[i]\) is not a field (and find the units)

\[z = \frac{1}{a + ib} = a - ib\]

If \(zB = 1\) \((\text{since } T = 1)\)

\[\Rightarrow \overline{z}B = \bar{a} \bar{b}\]

\[\Rightarrow z\overline{z} = a\overline{b} = 1\]

\[1 = a\overline{b} \overline{z} = (a + ib)(c + id)(a - ib)(c - id)\]

\[= (a^2 + b^2)(c^2 + d^2)\]

\[\Rightarrow a^2 + b^2 = \pm 1 = c^2 + d^2\]

\[\therefore a^2 + b^2 = |z|^2 = c^2 + d^2\]

Remember \(a, b, c, d \in \mathbb{R}\)

\[\therefore a^2 + b^2 = |z|^2 = c^2 + d^2\]

Since \(a, b, c, d \in \mathbb{R}\)

\[\therefore \quad \text{either} \quad a + ib = \pm 1 \quad \text{or} \quad a + ib = \pm i\]

\[\therefore z = \pm 1 \text{ or } \pm i \quad \text{and} \quad \overline{z} = \pm 1 \text{ or } \pm i\]
Prop 1 (Cancellation Law)

Let D be a commutative ring, $1 \in D$. Then D

is an integral domain iff $\forall a \in D, a \neq 0$,

whenever

$ab = ac \Rightarrow b = c$.

Proof: First suppose D is an integral domain.

$a \neq 0$ and let $ab = ac$ ($b, c \in D$)

$ab - ac = 0$

$a(b - c) = 0$

\therefore since $a \neq 0$ and D is an int. domain

$b - c = 0 \Rightarrow b = c$.

Suppose cancellation holds in D

Let $a b = 0$ (say $a \neq 0$)

Know $a 0 = 0$

So $a b = a 0$, by cancellation

$\Rightarrow b = 0 \therefore D$ is an int. domain.

\qed
Thm: Every finite integral domain is a field.

Proof: Let \(D \) be a finite domain.

\[D^* = \text{non-zero elements in} \ D \]

Define a map \(\lambda_a : D^* \to D^* \)
\[d \mapsto da \]
for each \(a \in D^* \)

\[\lambda_a \text{ is 1-1}: \quad \text{if} \quad \lambda_a(d_1) = \lambda_a(d_2) \]
\[\Rightarrow \quad ad_1 = ad_2 \Rightarrow \quad d_1 = d_2 \]
by cancellation

\[\therefore \quad \lambda_a \text{ is onto since } D^* \text{ is a finite set and } \lambda_a \text{ is 1-1} \]

\[\therefore \exists ! d \in D^* \text{ such that } \lambda_a(d) = ad = 1 \]

\[\therefore \quad d \text{ is a left inverse of } a, \text{ but } D \text{ is commutative} \]
\[\therefore \quad ad = da = 1 \quad \therefore \quad a^{-1} = d \]

Def. Let \(n \geq 0 \) \(n \in \mathbb{Z} \), \(r \in R \) a ring

write \(\underbrace{n \cdot r}_\text{Just a notation \(\times \) \(n \) times} = \underbrace{r + \cdots + r} \)

The characteristic of \(R \) is
\[\text{Char} (R) = \text{least positive } n \in \mathbb{Z} \text{ such that } nr = 0 \text{ for all} \]

\[r + \cdots + r = 0 \quad \text{for } r \in R \]

If no such \(n \) exists, \(= 0 \).

Example: \(\text{Char} (\mathbb{Z}_p) = p \) for \(p \) prime.

Since for \(a \in \mathbb{Z}_p \):

\[a + \cdots + a = p \cdot a = 0 \quad \text{p times} \]

\(\text{Char} (\mathbb{Z}) = \text{Char} (\mathbb{Q}) = \text{Char} (\mathbb{R}) = 0 \)

Lemma: Let \(R \) be a ring, \(1 \in R \). If \(111 = n \)

then \(\text{Char}(R) = n \).

If \(n \mid 0 \) \(\forall n \to 0 \) \(\text{Char}(R) = 0 \)

Proof: \(\text{Set } n < \infty \), \(n \cdot 1 = 1 + \cdots + 1 = 0 \).

Fix \(r \in R \):

\[nr = n(1r) = n(11) = (1 + \cdots + 1)r = 0 \]

If \(n = \infty \) \(\Rightarrow \) \(1 + \cdots + 1 \neq 0 \) \(\forall 1 \) \(n \) times

\[\text{Char}(R) = 0 \]
Theorem: The characteristic of an integral domain is either zero or prime.

Proof:
Let \(D \) be an integral domain, \(\text{Char}(D) = n \neq 0 \).

If \(n \) is not prime \(\Rightarrow n = a \cdot b \), \(1 \leq a \leq n \), \(1 \leq b \leq n \).

Since \(\text{Char}(D) = n \), then \(n \cdot 1 = 0 \).

\[(a \cdot b) \cdot 1 = 0 \]

Up check:
\[= (a \cdot 1)(b \cdot 1) = 0 \]

\[\Rightarrow \text{either } a \cdot 1 = 0 \text{ or } b \cdot 1 = 0 \]

\[\Rightarrow \text{either } \text{Char}(D) = a \text{ or } \text{Char}(D) = b \]

This is a contradiction of \(\text{Char}(D) = n \neq a, b \).

\[\Rightarrow \text{either } n \text{ is prime or } D \]