Thm 1. Let F be a field and suppose $p(x) \in F[x]$.

$I = \langle p(x) \rangle$ is maximal if and only if $p(x)$ is irreducible.

Proof: Suppose $I = \langle p(x) \rangle$ is maximal, $\Rightarrow I$ is a prime ideal and a maximal ideal is proper and non-zero

$\therefore p(x) \neq 0$

Suppose $p(x) = f(x)g(x)$

$\deg(f) < \deg(p), \deg(g) < \deg(p)$

$I = \langle p(x) \rangle$ is prime, $p(x) \in I \Rightarrow f(x)g(x) \in I$

\therefore either $f(x) \in I$ or $g(x) \in I$ (since I prime)

Say $f(x) \in I \Rightarrow f(x) = p(x)q(x)$ for some $q(x) \in F[x]$

but this is a contradiction since $\deg(f) \geq \deg(p)$

$\therefore p(x)$ is irreducible

Suppose $p(x)$ irr. over $F[x]$, $p(x) \in I \Rightarrow I = \langle p(x) \rangle$

$\therefore I \trianglelefteq \langle p(x) \rangle \trianglelefteq J \leq F[x]$

J is a principal ideal, say $J = \langle s(x) \rangle$ for some $s(x) \in F[x]$

$p(x) \in J \Rightarrow p(x) = f(x)g(x)$ for some $g(x) \in F[x]$.

(For some $g(x) \in F[x]$).
But $p(x)$ is irreducible \Rightarrow $f(x) = c \in F$ or $g(x) = c \in F$.

\Rightarrow $J = \langle c \rangle = \{ c \cdot r(x) \mid r(x) \in F[x] \}$.

- If $f(x) = c \Rightarrow J = \langle 1 \rangle = F[x]$
- If $g(x) = c \Rightarrow J = \langle f(x) \rangle = \langle p(x) \rangle = I$

$\therefore I = \langle p(x) \rangle$ is maximal.

Corollary
Let I be a field, $p(x) \in F[x]$. A non-zero, proper ideal I in $F[x]$ is prime iff $p(x)$ is irreducible.

Additionally, I is maximal iff I is a non-zero, proper, prime ideal.

Proof: Showed above (in proof) that if I prime (non-zero) \Rightarrow $p(x)$ is irreducible. By Thm above, $p(x)$ irreducible $\Rightarrow I = \langle p(x) \rangle$ is maximal $\Rightarrow I$ is prime.

Field of Fractions

- D - integral domain
- $S = \{ (a, b) \mid a, b \in D, b \neq 0 \}$

Define an eq. relation $(a,b) \sim (c,d) \iff ad = bc \text{ in } D$ $(\text{Think } \frac{a}{b} = \frac{c}{d})$
Lemma: \(\sim \) is an equivalence relation.

Proof:

- \(\sim \) reflexive \((a,b) \sim (a,b) \)

 \[a \cdot b = ba \text{ which is true since } D \text{ is commutative} \]

- (Symmetric) if \((a,b) \sim (c,d) \) \(\iff (c,d) \sim (a,b) \)

 \[ad = bc \iff cb = da \]

 These are same since

 \(D \) is commutative

- (Transitive)

 \[(a,b) \sim (c,d), (c,d) \sim (e,f) \]

 \[\begin{align*}
 ad &= bc \\
 cf &= dg
 \end{align*} \]

 \[af = be \iff (a,b) \sim (e,f) \]

\[\therefore S \text{ is a set of eq. classes} \]

\[F_D = S \]

\[\text{Field of fractions of } D \]

Let \(a,b,c,d \in D \)
Add: $[a, b] + [c, d] = [ad + bc, bd]$

mult: $[a, b][c, d] = [ac, bd]$

Lemma: Operations in F_D (above) are well defined.

Proof: (Addition) Suppose $[a_1, b_1] = [a_2, b_2]$, $[c_1, d_1] = [c_2, d_2]$

Show $[a_1, b_1] + [c_1, d_1] = [a_2, b_2] + [c_2, d_2]$

Show $[a_1 b_1 + b_1 c_1, b_1 d_1] = [a_2 d_2 + b_2 c_2, b_2 d_2]$

Show $(a_1 b_1 + b_1 c_1) b_2 d_2 = (a_2 d_2 + b_2 c_2) b_1 d_1 \in D$

$= a_1 b_1 b_2 d_2 + b_1 c_1 b_2 d_2 = a_1 b_2 d_1 d_2 + b_1 b_2 d_1 c_2$

$= (a_1 d_2 + b_2 c_2) b_1 d_1$

Lemma: F_D with ops above is a field.

Proof:

Add identity: $[0, 1]$ since $[a, b] + [0, 1] = [a + 0, b + 1] = [a, b]$

Add inverse is: $[-a, b]$
Multinves is \([b,a]\), i.e. \([a,b] \cdot [b,a] = [ab,\overline{ab}] = [1,1]\)

\[\rightarrow ab = \overline{ab}\]

etc.

Thm. 1 Let \(D\) be an integral domain. \(D\) can be imbedded in a field of fractions \(\mathbb{F}_D\) where and \([a,b] \in \mathbb{F}_D\) can be expressed as a

\[[a,b] = \frac{[a,1]}{[b,1]} \quad a, b \in D \]

Also \(\mathbb{F}_D\) is unique, i.e., if \(E\) is any field s.t. \(D \subseteq E\)

then \(\exists \psi : \mathbb{F}_D \rightarrow E\)

\[[a,b] \mapsto ab^{-1} \]

giving an isomorphism \(\mathbb{F}_D \cong \text{Subfield of } E\)

Aside in practice write \(a/b \in \mathbb{F}_D\), subfield = subring which is a field

Think about \(D = \mathbb{Z}\), \(\mathbb{F}_D = \mathbb{Q}\)

and \(E = \mathbb{R}\) or \(E = \mathbb{C}\), etc.

Proof: 1 First show \(D\) can be embedded in \(\mathbb{F}_D\)

Define a map \(\phi : D \rightarrow \mathbb{F}_D\)

\[a \mapsto \frac{[a,1]}{[b,1]} \]

let \(a, b \in D\)

\(\phi\) is a hom.

\[\phi(ab) = [ab,1] = \frac{[a,1]}{[b,1]} \cdot \frac{[b,1]}{[c,1]} = \phi(a) \phi(b) \]
\[\phi(a+b) = [a+b, 1] = [a, 1] + [b, 1] = \phi(a) + \phi(b) \]

\[\therefore \phi \text{ is hcm.} \]

Show \(\phi \) is 1-1. Suppose \(\phi(a) = \phi(b) \)

\[[a, 1] = [b, 1] \implies 1a = 1b \implies a = b. \]

\[\therefore \text{D can be imbedded in } F_0 \text{ r.o.} \quad \begin{array}{c}
\mathbb{D} \cong \phi(D) \leq F_0 \\
\uparrow
\end{array} \\
\text{By 1st iso. thm.} \\
\text{Since } \ker(\phi) = \{0\} \\
\phi(0) \text{ is a subring of } F_0. \]

- Any \([a, b] \in F_0\) is a quotient (of two things in \(\phi(D)\))

Since \(\phi(a) [\phi(b)]^{-1} = [a, 1] [b, 1]^{-1} = [a, 1][1, b]^{-1} = [a, b]^{-1} \)

\[\frac{\phi(a)}{\phi(b)} \]

Now let \(E \) be a field, \(D \subseteq E \) (as subring)

\[\psi : F_0 \to E \]

\[[a, b] \mapsto a b^{-1} \]

- Show \(\psi \) is well defined \([a_1, b_1] = [a_2, b_2] \)

\[\psi([a_1, b_1]) = a_1 b_1^{-1} = a_2 b_2^{-1} = \psi([a_2, b_2]) \]

\[\iff a_1 b_2 = b_1 a_2 \]

\[\text{By this, in } E \]

\[\psi([a_1, b_1]) = a_1 b_1^{-1} = a_2 b_2^{-1} = \psi([a_2, b_2]) \]
\[\psi \text{ is well defined} \]

Show \(\psi \) is a hom.

\[\psi \left([a, b] \cdot [c, d] \right) = \psi \left([ac, bd] \right) = ac (bd)^{-1} \]
\[= ab^{-1} cd^{-1} \]
\[= \psi([a, b]) \psi([c, d]) \]

Check \(\psi([a, b] + [c, d]) = \psi([a, b]) + \psi([c, d]) \)

\(\psi \) is hom.

Consider \(\ker \psi \)

If \(\psi([a, b]) = ab^{-1} = 0 \Rightarrow a = b \cdot 0 \)
\[[a, b] = [0, 1] \]

\(\therefore \ker \psi = [0, 1] \) in \(\mathbb{F}_p \), \(\therefore \psi \) is 1-1

By First Isomorphism Theorem
\[\mathbb{F}_0 = \mathbb{F}_0 / \ker \psi \cong \psi(\mathbb{F}_0) \leq E \]

\[\text{Ex} \quad \mathbb{Q}[x] - \text{is an integral domain} \]
\[\mathbb{Q}(x) = \left\{ \frac{p(x)}{q(x)} \mid q(x) \neq 0, \ p(x), q(x) \in \mathbb{Q}[x] \right\} \]

\[\text{Ex} \quad \mathbb{Q}(\sqrt{2}) = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\} \text{ contains } \mathbb{Q} \]
and \(\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \)
Corollary 1 Let F be a field of characteristic zero. Then F contains a subfield isomorphic to \mathbb{Q}.

Corollary 1 Let F be a field of characteristic P. Then F contains a subfield isomorphic to \mathbb{Z}_p.

Vector Spaces

Can define a vector space over any field F.

Definition A vector space V over a field F is:

- A group $(V, +)$ (with addition) with a scalar product αV for $\alpha \in F$, $v \in V$ s.t.:
 - $\lambda (\beta v) = (\lambda \beta) v$
 - $(\alpha + \beta)v = \alpha v + \beta v$
 - $\lambda (v + w) = \lambda v + \lambda w$
 - $1 \cdot v = v$

Example \mathbb{R}^n, \mathbb{C}^n

Example If F is a field, $F[x]$ is a vector space over F:

- The vectors in $F[x]$ are polynomials
- Vector addition is poly. addition
- $\lambda f(x)$ scalar mult. by field element
Example \[C[a, b] = \{ f : [a, b] \to \mathbb{R} \mid f \text{ continuous} \} \]

Example \[V = \mathbb{Q}(\sqrt{2}) \text{ is a vector space over } \mathbb{Q} \]
\[u, v \in \mathbb{Q}(\sqrt{2}) \]
\[u + v = (a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2} \]

Proposition Let \(V \) be a vector space over \(F \). The following holds:

- \(0 \cdot v = 0 \in V \) \(\forall v \in V, 0 \in F \)
- \(a \cdot 0 = 0 \) \(\forall a \in F, 0 \in V \)
- if \(x \cdot v = 0 \Rightarrow x = 0 \in F \) or \(v = 0 \in V \)
- \((-1) \cdot v = -v \) \(-1 \in F \), \(-v \in V \)
- \((-a) \cdot v = (-a) \cdot v = a \cdot (-v) \)

Subspaces

\(W \) is a subspace of a vector space \(V \) if \(W \) is closed under vector addition (i.e., Abelian subgroup) and scalar multi. i.e.

- \(u + w \in W \) \(\forall u, w \in W \)
- \(a \cdot w \in W \) \(\forall a \in F, w \in W \)
\[W = \sum_{i=0}^{\infty} a_i x^i \mid n \in \mathbb{Z}_{\geq 0}, a_i \in F \]

Is a subspace of \(U = F[x] \)

Def. \(v_1, \ldots, v_n \in U \), \(d_1, \ldots, d_n \in F \)

\[w = \sum_{i=1}^{n} d_i v_i = d_1 v_1 + \cdots + d_n v_n \]

\(w \) is a \underline{linear combination} of \(v_1, \ldots, v_n \)

\[W = \text{Span}_F(v_1, \ldots, v_n) = \left\{ \sum_{i=1}^{n} d_i v_i \mid d_i \in F \right\} \]

Prop. Let \(S = \left\{ v_1, \ldots, v_n \right\} \) be vectors in a vector space \(U \)

\(\text{Span}_F(S) \) is a subspace of \(U \).

Def. A set of vectors \(v_1, \ldots, v_n \) is \underline{linearly independent} if

\[d_1 v_1 + d_2 v_2 + \cdots + d_n v_n = 0 \]

if and only if \(d_1 = d_2 = \cdots = d_n = 0 \).

Def. If there are \underline{non-zero} \(d_i \)'s \(s.t. \)

\[d_1 v_1 + d_2 v_2 + \cdots + d_n v_n = 0 \], then \(\{v_1, \ldots, v_n\} \) is \underline{linearly dependent}.
Prop/ Let \(\{ v_1, \ldots, v_n \} \) be a linearly independent set in a vector space \(V \).

Suppose \(a_1 v_1 + \cdots + a_n v_n = b_1 v_1 + \cdots + b_n v_n \),

then \(a_1 = b_1, \ldots, a_n = b_n \).

Proof:
\[
\alpha_1 v_1 + \cdots + \alpha_n v_n = \beta_1 v_1 + \cdots + \beta_n v_n
\]

\[\left(\alpha_1 - \beta_1 \right) v_1 + \cdots + \left(\alpha_n - \beta_n \right) v_n = 0\]

Since \(\{ v_1, \ldots, v_n \} \) are linearly independent \(\Rightarrow \alpha_i - \beta_i = 0 \)

\(\Rightarrow \alpha_i = \beta_i \forall i \).

Prop/ \(\{ v_1, \ldots, v_n \} \) are linearly dependent

iff some \(v_i \) is a linear combination of the others.

Prop/ Suppose \(V = \text{Span}_F \{ v_1, \ldots, v_n \} \) where \(v_1, \ldots, v_n \) are linearly independent. If \(m > n \) then any set of \(m \) vectors in \(V \) must be linearly dependent.

Def/ \(\{ e_1, \ldots, e_n \} \) is a basis of \(V \) if \(\{ e_1, \ldots, e_n \} \) are linearly independent and \(V = \text{Span}_F \{ e_1, \ldots, e_n \} \).

Ex/ \((1,0,0), (0,1,0), (0,0,1) \) is a basis of \(\mathbb{R}^3 \).
Ex. \[\{ 1, \sqrt{2}, 3 \} \text{ or } \{ 1 + \sqrt{2}, 1 - \sqrt{2}, 3 \} \text{ are bases of } \mathbb{Q}(\sqrt{2}) \]

Prop. Let \(\{ e_1, \ldots, e_m \} \) and \(\{ f_1, \ldots, f_n \} \) be bases for a vector space \(V \) then \(m = n \).

Def. Let \(\{ e_1, \ldots, e_n \} \) is a basis for a vector space \(V \)
define the dimension of \(V \):

\[
dim(V) = n.
\]

Thm. Let \(V \) be a vector space of dimension \(n \).

1) If \(S = \{ v_1, \ldots, v_n \} \) is a set of linearly independent vectors in \(V \), then \(S \) is a basis for \(V \).

2) If \(S = \{ v_1, \ldots, v_n \} \) spans \(V \), then \(S \) is a basis for \(V \).

3) If \(S = \{ v_1, \ldots, v_k \} \) is a set of linearly independent vectors in \(V \), \(k < n \), then \(\exists v_{k+1}, \ldots, v_n \) s.t.

\[
\{ v_1, \ldots, v_k, v_{k+1}, \ldots, v_n \} \text{ is a basis for } V.
\]
Fields

- When is a field F contained in a larger field F_1?
- What fields are between \mathbb{Q} and \mathbb{R}?

Let F be a field, $p(x) \in F[x]$:

Can we find a field E, $F \subseteq E$, s.t.

$p(x)$ factors into linear factors over $E[x]$.

Consider $p(x) = x^4 - 5x^2 + 6 \in \mathbb{Q}[x]$.

\[p(x) = (x^2 - 2)(x^2 - 3) \]

\[\iff p \text{ has no zeros in } \mathbb{Q}, \text{ has 4 zeros in } \mathbb{R} \]

Can find smaller fields where $p(x)$ has zeros:

- $\mathbb{Q}(\sqrt{2}) = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$
- $\mathbb{Q}(\sqrt{3}) = \{ a + b\sqrt{3} \mid a, b \in \mathbb{Q} \}$

- 2 roots in either field.
Extension Fields

A field E is an extension field of a field F if F is a subfield of E. F is called the base of E. Write $F \subseteq E$

Example 1

$F = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$

$E = \mathbb{Q}(\sqrt{2} + \sqrt{3}) = \{a + b(\sqrt{2} + \sqrt{3}) \mid a, b \in \mathbb{Q}\}$

E is an extension field of F

$\sqrt{2} + \sqrt{3} \in E \quad \frac{1}{\sqrt{2} + \sqrt{3}} = \sqrt{3} - \sqrt{2} \in E$