Basic Properties of Groups

Groups can be finite or infinite

Let G be a group write $|G| = n$ of elements in G

$|\mathbb{Z}_5| = 5$, $|\mathbb{Z}| = \infty$

Proposition 3.17. The identity element in a group G is unique; that is, there exists only one element $e \in G$ such that $eg = ge = g$ for all $g \in G$.

Inverses are also unique

If g', g'' are inverses of g

$$g' \cdot g = e \quad \text{and} \quad g \cdot g'' = g'' \cdot g = e$$

$$g' = g' \cdot e = g' \cdot (g \cdot g'') = (g' \cdot g) \cdot g'' = e \cdot g'' = g''$$

$\therefore \quad g' = g''$

Proposition 3.18. If g is any element in a group G, then the inverse of g, denoted by g^{-1}, is unique.

Proposition 3.19. Let G be a group. If $a, b \in G$, then $(ab)^{-1} = b^{-1}a^{-1}$.

Proof:

$$a \cdot b \cdot b^{-1}a^{-1} = a \cdot e \cdot a^{-1} = a \cdot a^{-1} = e = b^{-1} \cdot a^{-1} \cdot a \cdot b$$

$\Rightarrow \quad a \cdot b \cdot (b^{-1}a^{-1}) = e$

$$(b^{-1}a^{-1})a \cdot b = e$$

$\therefore \quad \text{by definition} \quad (ab)^{-1} = b^{-1}a^{-1}$$
Prop 1. Let G be a group. For any $a \in G$, $(a^{-1})^{-1} = a$.

Proof: $a^{-1} \cdot (a^{-1})^{-1} = e$

$= a^{-1} \cdot e = a$

$(a^{-1})^{-1} = a$.

Proposition 3.21. Let G be a group and a and b be any two elements in G. Then the equations $ax = b$ and $xa = b$ have unique solutions in G.

Right and left cancellation laws hold in groups:

Proposition 3.22. If G is a group and $a, b, c \in G$, then $ba = ca$ implies $b = c$ and $ab = ac$ implies $b = c$.

Exponents in Groups

Define: $g^0 = e$, $g^n = g \cdot \ldots \cdot g$ n times, $g^{-n} = g^{-1} \cdot \ldots \cdot g^{-1}$.

Theorem 3.23. In a group, the usual laws of exponents hold; that is, for all $g, h \in G$,

1. $g^m g^n = g^{m+n}$ for all $m, n \in \mathbb{Z}$;
2. $(g^m)^n = g^{mn}$ for all $m, n \in \mathbb{Z}$;
3. $(gh)^n = (h^{-1} g^{-1})^{-n}$ for all $n \in \mathbb{Z}$. Furthermore, if G is abelian, then $(gh)^n = g^n h^n$.

If G is not abelian.
Subgroups

A smaller group inside another group

Example

Even integers

\[\mathbb{Z} = \{ \ldots, -2, 0, 2, 4, \ldots \} \text{ is a group under addition, and is a subgroup of } (\mathbb{Z}, +) \]

Formally, a subgroup of a group \(G \) is a subset \(H \) of \(G \) such that \(H \) is also a group under the operation of \(G \):

1. \(H = \{ e \} \) is a subgroup of every group, called the trivial subgroup.
2. \(G \), \(\{ e \} \) are always subgroups of \(G \).
3. \(H \), proper subgroup \(\implies \) \(H \) is a proper subset and a subgroup.

Example

\(\mathbb{C}^* = \) group of non-zero complex numbers under mutl.

\(H = \{ 1, -1, i, -i \} \) is a subgroup under mutl.

Example

\(\text{SL}_2(\mathbb{R}) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid \det(A) = 1 \right\} \) is a subgroup of \(\text{GL}_2(\mathbb{R}) \), the invertible \(2 \times 2 \) real matrices under matrix mutl.

- Closed since \(\det(A) \cdot \det(B) = \det(AB) \)
- Has inverses since \(\det(A^{-1}) = \frac{1}{\det(A)} \implies A^{-1} \in \text{SL}_2(\mathbb{R}) \) if \(A \in \text{SL}_2(\mathbb{R}) \)
- \(I \in \text{SL}_2(\mathbb{R}) \)
Ex

\[M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\} \] under addition.

\(\text{GL}_2(\mathbb{R}) \) is a subset, but not a subgroup under addition.

Since it is not closed i.e. \(a \circ 0 \)

\[\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -a & 0 \\ 0 & -c \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \notin \text{GL}_2(\mathbb{R}) \]

Proposition 3.30. A subset \(H \) of \(G \) is a subgroup if and only if it satisfies the following conditions:

1. The identity \(e \) of \(G \) is in \(H \).
2. If \(h_1, h_2 \in H \), then \(h_1h_2 \in H \).
3. If \(h \in H \), then \(h^{-1} \in H \).

Proof:

First suppose \(H \) is a subgroup of \(G \), show 1, 2, 3 hold.

\(H \) is a group \(\Rightarrow \) has an identity \(e_H \in H \), show \(e_H = e \).

\(e_H e_H = e_H \) and \(e e_H = e_H e = e_H \)

\(e e_H = e_H e_H \)

\(e = e_H \Rightarrow 1 \) holds

Since \(H \) is a group, we know (since \(H \) is a group)

\(\exists h' \in H \) s.t. \(hh' = h' h = e \)

Since inverses in \(G \) are unique then \(h' = h^{-1} \)

Conversely, if 1, 2, 3 hold then \(H \) is a group by def using the associative binary op. of \(G \).
Prop 3.3.1

Let H be a subset of a group G. Then H is a subgroup of G if and only if $H \neq \emptyset$ and whenever $g, h \in H \Rightarrow gh^{-1} \in H$.

Proof:
First assume H is a subgroup, and $g, h \in H$

$\Rightarrow h^{-1} \in H$ and $gh^{-1} \in H$

Now suppose $H \subseteq G$, $H \neq \emptyset$ and $gh^{-1} \in H$ whenever $g, h \in H$.

Consider $h=g$

$gg^{-1} \in H \Rightarrow e \in H$

Now $a \in H$ be arbitrary set $g=a$, then

$e \cdot a^{-1} = a^{-1} \in H$

\therefore identity and inverses are in H

Need to show closure:
Suppose $h_1, h_2 \in H$ show $h_1h_2 \in H$, we know $h_2^{-1} \in H$

$h_1(h_2^{-1})^{-1} \in H$

$h_1h_2 \in H$

\therefore H is closed, thus H is a subgroup of G.

\[\square \]

\textit{Remark}