Def: A permutation is even if it can be expressed as an even number of transpositions.

The Alternating Group: \((\text{on } n \text{ letters}) \)

\[A_n = \text{set of all even permutations in } S_n \]

Theorem 5.16 \(\) The set \(A_n \) is a subgroup of \(S_n \).

Proof:
- Product of two even permutations is even: \(A_n \) is closed.
- \(\text{id} \) is even (Theorem from Friday): \(\text{id} \in A_n \).
- If \(\sigma \) is even, \(\sigma = \sigma_1 \cdots \sigma_r \) for \(r \) even.

\[(\sigma_1 \cdots \sigma_r)^{-1} = \sigma_r^{-1} \cdots \sigma_1^{-1} = \sigma_r \cdots \sigma_1 \]

\[\therefore \sigma^{-1} \in A_n. \]

Proposition 5.17 \(\) For \(n \geq 2 \) the number of even permutations is equal to the number of odd permutations \(\Rightarrow |A_n| = \frac{n!}{2} \).

Proof:
- \(A_n \) - even perm
- \(B_n \) - odd perm

Show \(\exists \) a bijection between \(A_n \) and \(B_n \).

Fix arbitrary transposition \(\sigma \in S_n \) (\(\exists \) since \(n \geq 2 \)).

Define a map \(\lambda_\sigma: A_n \rightarrow B_n \)

\[: T \mapsto \sigma \cdot T \]
1-1: Suppose $\lambda_0(T) = \lambda_0(M)$ for $T, M \in \text{An}$ then

$$\sigma T = \sigma M$$

$$T = \sigma^{-1} \sigma T = \sigma^{-1} \sigma M = M$$

$$\therefore T = M.$$

$$\therefore \lambda_0 \text{ is 1-1.}$$

Onto: Pick arbitrary $\lambda \in B_n$ show $\exists T \in \text{An}$ s.t $\lambda_0(T) = \lambda$

Consider $T = \sigma \lambda$, since λ is odd $\therefore T$ is even and

$$\lambda_0(T) = \sigma \sigma \lambda = \lambda$$

Example 5.18. The group A_4 is the subgroup of S_4 consisting of even permutations. There are twelve elements in A_4:

- (1)
- $(12)(34)$
- $(13)(24)$
- $(14)(23)$
- (123)
- (132)
- (124)
- (142)
- (134)
- (143)
- (234)
- (243)

Dihedral Groups

Subgroups of S_n

n^{th} dihedral group: group of rigid motions of a regular n-gon

- Notice we have n choices for the first vertex
- If we replace 1 by k then 2 must be one of $k+1$ or $k-1$
- $2n$ possible rigid motions
 - n reflections and n rotations

Figure 5.19: A regular n-gon
Theorem 5.20

The dihedral group D_n, is a subgroup of S_n of order $2n$.

![Diagram of rotations and reflections of a regular n-gon](image1)

Figure 5.21: Rotations and reflections of a regular n-gon

![Diagram of types of reflections of a regular n-gon](image2)

Figure 5.22: Types of reflections of a regular n-gon

Theorem 5.23

The group D_n in $n \geq 3$ consists of all products of two elements r and s satisfying the relations

- $r^n = 1$ (rotations)
- $s^2 = 1$ (reflections)
- $srs = r^{-1}$

Proof: The are exactly n-rotations:

- id, $\frac{2\pi}{n}$, $\frac{4\pi}{n}$, \ldots, $\frac{(n-1)2\pi}{n}$.
\[r = \frac{2\pi}{n} \quad \text{this generates all other rotations} \]
\[\text{(think of roots of unity)} \]
\[\text{i.e.} \quad r^k = k \cdot \frac{2\pi}{n} \]

Label \(n \) reflections \(S_1, \ldots, S_n \) where \(S_k \) leaves the \(k \)th vertex fixed. Two cases

Even \(n \) vertices
- Two vertices fixed by such a reflection

Odd \(n \) vertices
- One vertex fixed
\[|S_n| = 2 \]

\(S = S_1 \) Then \(S^2 = \text{id} \) \(r^n = \text{id} \)

Consider the first vertex of an \(n \)-gon:
Any rigid motion replace \(1 \) by \(k \)
then \(2 \) becomes either \(k+1 \) or \(k-1 \)

If \(2 \Rightarrow k+1 \) then
\[t = r^{k-1} \]

If \(2 \) is replaced by \(k-1 \) then
\[t = r^{k-1} \]

Show \(r^{-1} = S r S \)

\[S r S = \text{First} \]

Show \(r^{-1} = S r S \)
Example: D_4 rigid motions of a square

$|D_4| = 8$

Figure 5.25: The group D_4

Rotations

$r = (1 2 3 4)$
$r^2 = (1 3)(2 4)$
$r^3 = (1 4 3 2)$
$r^4 = (1)$

Reflections

$s_1 = (2 4)$
$s_2 = (1 3)$

The other two reflections

$rs_1 = (1 2)(3 4)$
$r^3 s_1 = (1 4)(2 3)$ — Reflection in "y" axis's