Cosets:

Let \(G \) be a group, \(H \) a subgroup, \(g \in G \).

Define a left coset of \(H \) with representative \(g \) as
\[
gH = \{ gh \mid h \in H \}
\]

Right coset
\[
Hg = \{ hg \mid h \in H \}
\]

Ex.

Let \(H = \langle 3 \rangle = \{0, 3, 6\} \) be the subgroup of \(\mathbb{Z}_6 \) generated by 3.

Cosets are:
\[
0 + H = 3 + H = \{0, 3\}
\]
\[
1 + H = 4 + H = \{1, 4\}
\]
\[
2 + H = 5 + H = \{2, 5\}
\]

Ex.

Let \(k \) be the subgroup of \(S_3 \) given by \(k = \langle (1), (12) \rangle \).

Left cosets
\[
(1)k = (12)k = \{ (1), (12) \}
\]
\[
(13)k = (123)k = \{ (13), (123) \}
\]
\[
(23)k = (132)k = \{ (23), (132) \}
\]

Right cosets
\[
k(1) = k(12) = \{ (1), (12) \}
\]
\[
k(13) = k(132) = \{ (13), (132) \}
\]
\[
k(23) = k(123) = \{ (23), (123) \}
\]
Lemma 6.3. Let H be a subgroup of a group G and suppose that $g_1, g_2 \in G$. The following conditions are equivalent.

1. $g_1 H = g_2 H$;
2. $H g_1^{-1} = H g_2^{-1}$;
3. $g_1 H \subseteq g_2 H$;
4. $g_2 \in g_1 H$;
5. $g_1^{-1} g_2 \in H$.

Theorem 6.4

Let H be a subgroup of a group G. Then the left (resp. right) cosets of H in G partition G.

That is, G is the disjoint union of the left (resp. right) cosets of H in G.

Proof:

Let $g_1 H$, $g_2 H$ be two cosets of H in G. Show that

$g_1 H \cap g_2 H = \emptyset$ or $g_1 H = g_2 H$.

Suppose $g_1 H \cap g_2 H \neq \emptyset$ and $a \in g_1 H \cap g_2 H$ then

$a = g_1 h_1 = g_2 h_2$ for some $h_1, h_2 \in H$

$\Rightarrow g_1 = g_2 h_2 h_1^{-1}$

$g_1 = g_2 H$

$g_1 H = \frac{1}{2} g_1 H \mid h e H \Rightarrow \frac{1}{2} g_2 H \mid h e H \Rightarrow$

$\frac{1}{2} g_2 H \mid h e H \Rightarrow g_2 H$

And all $g \in G$ appear in some coset, in particular in $g H$ since $g e = g$ and $e \in H$.\[\]
Def | Let G be a group, H is a subgroup. Define the index of H in G:

$$[G : H] = \text{no. of left cosets of } H \text{ in } G$$

Ex | $G = \mathbb{Z}_6$, $H = \{0, 3\}$, $[G : H] = 3$

Theorem 6.8 | Let H be a subgroup of G.

If H left cosets of H in G, then H right cosets of H in G.

Proof:

L_H - left cosets
R_H - right cosets

We wish to define a bijection $\phi : L_H \rightarrow R_H$.

If $gH \in L_H$, let $\phi(gH) = Hg^{-1}$, note that this map is well-defined since if $g_1H = g_2H = gH$ are different representatives of gH then $Hg_1^{-1} = Hg_2^{-1} = Hg^{-1}$ (by Lemma 6.3 Part 1 and 2).

1-1: Suppose $\phi(g_1H) = \phi(g_2H)$

$\Rightarrow Hg_1^{-1} = Hg_2^{-1} \Rightarrow g_1H = g_2H$.

Onto: For any $Hg \in R_H$, we have that $\phi(g^{-1}H) = H(g^{-1})^{-1} = Hg$. Thus ϕ is onto.

$\Rightarrow \phi$ is a bijection $|L_H| = |R_H|$.
Lagrange's Theorem

Theorem

Let \(G \) be a finite group and let \(H \) be a subgroup of \(G \).

Then \[\frac{|G|}{|H|} = [G : H] = \text{is the number of distinct left cosets of } H \text{ in } G. \]

In particular \[|H| \mid |G|. \]

Proof: (by Theorem 6.4)

The group \(G \) is partitioned into \([G : H]\) distinct cosets.

Each coset has \(|H|\) elements.

\[\therefore \quad |G| = [G : H]|H| \]

Corollary

Suppose \(G \) is a finite group, \(g \in G \).

Then \(|g| \mid |G|\). That is order of an element divides order of \(G \).

Proof: Apply Lagrange's Theorem to \(H = \langle g \rangle \).

Corollary

Let \(|G| = p\) for \(p \) prime. Then \(G \) is cyclic and is generated by any \(g \in G \) s.t. \(g \neq e \).

Proof:

Let \(g \in G, g \neq e \).

Then \(|g| \mid |G|\), but since \(g \neq e \) \(|g| > 1\) and \(|g| \leq |G|\).

\[\Rightarrow \quad |g| = |G| \Rightarrow G = \langle g \rangle.\]
Corollary 1 Let H and K be subgroups of G, $|G| < \infty$ such that $K \leq H \leq G$. Then $[G:K] = [G:H][H:K]$.

Proof. From Lagrange's Theorem

$$[G:K] = \frac{|G|}{|K|} = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|} = [G:H][H:K].$$