Prop. Let \(S = \{v_1, \ldots, v_n\} \) be vectors in a vector space \(V \).
\(\text{Span}_F(S) \) is a subspace of \(V \).

Linear Independence

Def. A set of vectors \(v_1, \ldots, v_n \) is linearly independent if

\[\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = 0 \]

implies that \(\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 \).

Linearly dependent if there are non-zero \(\alpha_i \)'s s.t.

\[\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = 0 \]

Prop. Let \(\{v_1, \ldots, v_n\} \) be a linearly independent set in a vector space \(V \).

Suppose
\[\alpha_1 v_1 + \cdots + \alpha_n v_n = 0 \]

\[\Rightarrow \alpha_1 = \beta_1, \ldots, \alpha_n = \beta_n \]

Proof:

\[\alpha_1 v_1 + \cdots + \alpha_n v_n = 0 \]

\[\Rightarrow (\alpha_1 - \beta_1)v_1 + \cdots + (\alpha_n - \beta_n)v_n = 0 \]

Since \(\{v_1, \ldots, v_n\} \) are lin. independent.
Prop 1: \(\exists u_1, \ldots, u_n \) are linearly dependent \(\iff \) one of the \(u_i \)'s is a linear combo. of the rest.

Prop 1: Suppose \(V = \text{Span}_F (u_1, \ldots, u_n) \) with \(u_1, \ldots, u_n \) lin. independent.

If \(m > n \) then any set of \(m \) vectors in \(V \) must be lin. dependent.

Def 1: \(\{ e_1, \ldots, e_n \} \) is a basis of \(V \) if \(\{ e_1, \ldots, e_n \} \) is linearly independent and

\[V = \text{Span}_F (e_1, \ldots, e_n) \]

Ex 1: \((1,1,0), \ldots \) etc. \(\mathbb{R}^3 \)

Ex 1: \(\frac{1}{2}, 1, \sqrt{2} \) \(\frac{1}{2}, 1 + \sqrt{2}, 1 - \sqrt{2} \) \in \(\mathbb{Q} (\sqrt{2}) \)

Prop 1: If \(\{ e_1, \ldots, e_n \} \) are bases for \(V \) then \(m = n \).

Def 1: If \(\{ e_1, \ldots, e_n \} \) is a basis for a vec. space \(V \), \(\text{dim}(V) = n \).
Theorem 20.15. Let V be a vector space of dimension n.

1. If $S = \{v_1, \ldots, v_n\}$ is a set of linearly independent vectors for V, then S is a basis for V.

2. If $S = \{v_1, \ldots, v_n\}$ spans V, then S is a basis for V.

3. If $S = \{v_1, \ldots, v_k\}$ is a set of linearly independent vectors for V with $k < n$, then there exist vectors v_{k+1}, \ldots, v_n such that

$$\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$$

is a basis for V.

Fields

- When is a field F contained in a larger field G?
- What fields are between \mathbb{Q} and \mathbb{R}?

Let F be a field, $p(x) \in F[x]$:

Can we find a field E, $F \subseteq E$, such that $p(x)$ factors into linear factors over $E[x]$?

Example

Consider $p(x) = x^4 - 5x^2 + 6 \in \mathbb{Q}[x]$,

$$p(x) = (x^2 - 2)(x^2 - 3)$$

- p has no zeros in \mathbb{Q}, has 4 zeros in \mathbb{IR}
- can find smaller fields where $p(x)$ has zeros:
 - Extension field
 $$\mathbb{Q}(\sqrt{2}) = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\}$$
 $$\mathbb{Q}(\sqrt{3}) = \left\{ a + b\sqrt{3} \mid a, b \in \mathbb{Q} \right\}$$
- 2 roots in neither field.
Extension Fields

A field E is an extension field of a field F if F is a subfield of E. F is called the base of E. Write $F \subset E$.

Example 1: $F = \mathbb{Q}(\sqrt{2}) = \{ a + b \sqrt{2} \mid a, b \in \mathbb{Q} \}$

$E = \mathbb{Q}(\sqrt{2} + \sqrt{3}) = \{ a + b(\sqrt{2} + \sqrt{3}) \mid a, b \in \mathbb{Q} \}$

E is an extension field of F:

$\sqrt{2} + \sqrt{3} \in E \implies \frac{1}{\sqrt{2} + \sqrt{3}} = \sqrt{3} - \sqrt{2} \in E$

Note we now have an extension field with all roots of $x^4 - 5x^2 + 6$

Aside:

Field of fractions of $\mathbb{Z}[\sqrt{n}] \cong \mathbb{Q}(\sqrt{n})$

Any element of field of fractions of $\mathbb{Z}[\sqrt{3}]$

\[
\frac{c + d\sqrt{3}}{e + f\sqrt{3}} \rightarrow \frac{c + b\sqrt{3}}{e + f\sqrt{3}} = \text{conjugation, simplify.}
\]

Homework problem