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Combinatorial definitions

A partition A  n is a weakly decreasing sequence of positive integers that
sum to n.

The Young diagram of L = (A1,25,...,A) is an left-aligned arrangement
of n boxes, with A; many boxes in row i.

A=(4,2,1)F7

||

The irreducible representations of S, are indexed by partitions A F n.

Mitsuki Hanada A charge monomial basis of the Garsia-Procesi ring 2/31



Combinatorial definitions

A standard Young tableau (SYT) of shape A I n is a filling of the Young
diagram of A where {1,...,n} appear exactly once and the entries are
increasing within the rows and columns.

[6]
2[5 .
1[3]4]7]

The row reading word of T (rw(T)) is the word we get by concatenating
the row words from top to bottom.

[6]
rw( 2[5 > = 6251347.
1[3]4]7]
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RSK correspondence

We denote the set of all SYT of size n as SYT,,.

Remark: RSK

By Robinson-Schensted-Knuth correspondence we have

Sp = {(P,Q) | P,Q e SYT,,shape(P) = shape(Q)}

w = (P(w), Q(w)).
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Coinvariant Ring

C[x1,-..,xs] = C[x] has a natural S, action permuting the variables.
The coinvariant ring (of Type Ap_1) is
Rin = C[x]/{ek(x) for k€ {1,---,n})

where e (x) = Y XXX
i1 <ip <<l

Rin is isomorphic to...
@ Regular rep of S,(ungraded)
e Cohomology ring of the flag variety (as graded S, reps)
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Frobenius character

The Frobenius characteristic map is a map from (virtual) characters of S,
to symmetric functions of degree n (with coefficients in Z) that takes

Ch(V;L) — S)'[X].

The resulting symmetric function Frob(V/) is the Frobenius character of V.
Frob( V') encodes the decomposition of V into irreducibles.

Frob(V(2,1) ® V(1,1.1)) = S(2.1) T S(1.1.1)-
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Graded Frobenius character

For a graded CS,-module V = @40 V4, the graded Frobenius character
Frobg(V) is
Frobg(V) = Y qFrob(Vy).
d>0

For the coinvariant ring, we have

FrObq(RI") = Z qmaj(T)sshape(T) = Z qCOCharge(T)Sshape( T)-
TeSYT, TeSYT,
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Monomial bases of the coinvariant ring

@ Artin basis

{fe(x)= ] xo10€Sn}

i<j,0;>0j
Corresponds to inversions

inv(o) :=[{(i.J) | i <j,0i>0j}].

— deg(f(x)) = inv(0).

Mitsuki Hanada

@ Descent basis

{g5(x) = H Xoy "+ Xo; | O € Sp}

i,G;>G,'+1

Corresponds to major index

maj(o) := Z i

i:0;>0i41

= deg(gs(x)) = maj(o).
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Monomial bases of the Coinvariant ring

@ Artin basis @ Descent basis
{fs(x) = H Xo; | O € Sp} {gs(x) = H Xoy**Xo; | O € Sp}
i<j,(7,'>('5j I'A,G,‘>G,'+1
Corresponds to inversions Corresponds to major index

The permutation statistics inv and maj have the same distribution:

Z qinv(G) _ Z qmaj(O') = [n]q! = Hl|bq(R1")

o€ES, o€eS,

— Both bases are compatible with Hilbg(Rin)
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Garsia-Procesi Ring

Definition
For u = n, the Garsia-Procesi ring Ry is

Ry = C[X]//ﬂ
where the ideal /, is generated by
{ea(S) | S C{xt,. ., xn}, 1S = pl5 () <d <|S[}

where p{ (1) is the number of boxes that are not in the first (n— k)
columns of the Young diagram of u.
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Garsia-Procesi Ring

Definition

For u = n, the Garsia-Procesi ring Ry is
Ry = C[X]//ﬂ
where the ideal /, is generated by
{ed(S) | S C{x1,....xa}, S| = pl5) (1) <d <|S[}

where p{ (1) is the number of boxes that are not in the first (n— k)
columns of the Young diagram of u.

Remark

Ry, are quotients of the coinvariant ring Ry~ arising from geometry
(Springer fibers C Flag variety.)
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Frobq(Ry)

For u n, we have B
Frobq(Ry) = Hu[X; q]

where I:I,l [X;q] is the modified Hall-Littlewood polynomial.

Theorem (Lascoux 1989)

Ty harge(T
Hll [X, q] = Z q° aree( )sshape(Tt)’
TeSYT,
ctype(T)>p
where > denotes the dominance order on partitions of size n and T*
denotes the transpose of T.
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What is ctype(T)?

Theorem (Lascoux 1989)

/:Ili [X, C]] = Z qcharge( T)sshape(Tt)7
TeSYT,
ctype(T*)>p

where > denotes the dominance order on partitions of size n and T*
denotes the transpose of T.
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What is ctype(T)?

Theorem (Lascoux 1989)

/:Ili [X, C]] = Z qcharge( T)sshape(Tt)7
TeSYT,
ctype(T*)>p

where > denotes the dominance order on partitions of size n and T*
denotes the transpose of T.

Remark

The catabolizability type ctype(T) of a SYT is a partition.
We have a cocharge preserving bijection:

{T €SYT, | ctype(T)>pu} < {S €SSYT with weight u}.
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What is charge?

For any permutation w € S,,, we can construct its charge word c(w) by
labeling each letter in w in the following way:

@ label 1 by 0,

o if we label i by k, we label i+1 by
k41 if i+1is to the right of /
k if i is to the left of i

The word consisting of these labels is the charge word c(w).

Example:

w=4 2153
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What is charge?

For any permutation w € S,,, we can construct its charge word c(w) by
labeling each letter in w in the following way:

@ label 1 by 0,

o if we label i by k, we label i+1 by
k41 if i+1is to the right of /
k if i is to the left of i

The word consisting of these labels is the charge word c(w).

Example:

w=42153
cw)=10021
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What is charge?

@ charge(w) is the sum of the letters in c(w).
o charge(T) = charge(rw(T)).
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What is charge?

@ charge(w) is the sum of the letters in c(w).
o charge(T) = charge(rw(T)).

Remarks

e maj(rev(w 1)) = charge(w) (where rev(w) is the reverse word)
o If P(w) = P(w'), then charge(w) = charge(w').
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Coinvariant ring and Garsia-Procesi rings

Coinvariant ring Ryn

Garsia-Procesi R,

Z tharge(T)Sshape(Tt)

charge(T)
Frobq ; ;T G Sehape(T) TESYT,
SYTh ctype(T*)>p
charge(w)
Hl|bq [n]q! _ Z qcharge(w) W;S q
WESn ctype(P(w)")

Mitsuki Hanada
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Returning to monomial bases of Rjn

Are there subsets of monomial bases of Ri» that are bases of R;,?
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Returning to monomial bases of Rjn

Are there subsets of monomial bases of Ri» that are bases of R;,?

@ Artin basis

{fs(x)= J] xo|0€Sn}

i<j,0;>0j

1
Garsia-Procesi (1992)

Mitsuki Hanada

@ Descent basis
{g5(x) = H Xop *** Xo; | o €S}

I‘,G,‘>G,'+1

1
Carlsson-Chou(2024)

“shuffles of descent monomials”
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Returning to monomial bases of Rjn

Are there subsets of monomial bases of Ri» that are bases of R;,?

@ Artin basis @ Descent basis
{fs(x)= J] xo|0€Sn} {go(x)= [[ o --x0; | 0 €Sn}
i<j,(7,'>6j i,6;>6,'+1
1 1
Garsia-Procesi (1992) Carlsson-Chou(2024)

“shuffles of descent monomials”

Neither of these bases have direct connections to Frobq(Ry) or Hilbg(Ry)!
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Returning to monomial bases of Rjn

Find a description of a monomial basis of R, that is
@ a subset of the Artin basis/Descent basis,

@ compatible with

FrObQ(RIJ) = - SZYT CIChargE(T)Sshape( T?)
€SYT,
ctype(TH)>pu
Hilbg(Ry)= Y, ghee),
weS,
ctype(P(w)f)>u
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Charge monomial basis of Ry

Theorem (H. 2024-+)
The set

(x™) | we S,, ctype(P(w)t)>pu}

is a monomial basis of Rj,.
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Charge monomial basis of Ry

Theorem (H. 2024-+)
The set

(x™) | we S,, ctype(P(w)t)>pu}

is a monomial basis of Rj,.

This basis coincides with the basis given by Carlsson-Chou.
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Example: Charge monomial basis of Ry

Theorem (H. 2024+)

The set {x(") | w € S, ctype(P(w)t)>u} is a monomial basis of R,,.

We know ctype ( ) :@3.
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Example: Charge monomial basis of Ry

Theorem (H. 2024+)

The set {x(") | w € S, ctype(P(w)t)>u} is a monomial basis of R,,.

We know ctype ( ) :@3.

.
There are three different w € S, such that P(w) = () :.

w = 2134
w = 2314
w = 2341

Mitsuki Hanada A charge monomial basis of the Garsia-Procesi ring 21/31



Example: Charge monomial basis of Ry

Theorem (H. 2024+)

The set {x(") | w € S, ctype(P(w)t)>u} is a monomial basis of R,,.

We know ctype ( ) :@3.

.
There are three different w € S, such that P(w) = () :.

w = 2134 — c(w) = 0012
w = 2314
w = 2341
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Example: Charge monomial basis of Ry

Theorem (H. 2024+)

The set {xX(") | w € S,,, ctype(P(w)t)>u} is a monomial basis of R,,.

We know ctype < > :@j.

. '
There are three different w € S, such that P(w) = <> :.

w =2134 — c(w) = 0012
w = 2314 — ¢(w) = 0102
w = 2341 — c(w) = 0120
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Example: Charge monomial basis of Ry

Theorem (H. 2024+)

The set {xX(") | w € S,,, ctype(P(w)t)>u} is a monomial basis of R,,.

We know ctype < > :@j.

. '
There are three different w € S, such that P(w) = <> :.

w =2134 — c(w) = 0012
w = 2314 — ¢(w) = 0102
w = 2341 — c(w) = 0120

Thus x3xZ,%x2,x0x3 are all in {x*") | w € S, ctype(P(w)t)>u}
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Example: Charge monomial basis of Ry

S {w ] P(w)=S} {x<") | P(w) =S}
2

{2134, 2314, 2341} [, xexg, x2x3)
{2143 , 2413} {x3%4, Xo%4}

2

% {4213, 4231, 2431} {X1X4, X1X3, X2X3}
i3]

3

2 (3214, 3241, 3421} {xa, x3, 2}

1[4]

4

% {4321} {1}

1
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Charge monomial basis of Ry

Theorem (H. 2024+)

The set
{x™ | wesS,, ctype(P(w)")>u}

is a monomial basis of Ry,.

Why is this basis nice?
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Charge monomial basis of Ry

Theorem (H. 2024+)

The set
{xC(W) | we S, ctype(P(w)")>pu}

is a monomial basis of Ry,.

Why is this basis nice?
o It is a subset of the descent basis of Ryn. (charge <> maj)
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Charge monomial basis of Ry

Theorem (H. 2024+)

The set
{xC(W) | we S, ctype(P(w)")>pu}

is a monomial basis of Ry,.
Why is this basis nice?
o It is a subset of the descent basis of Ryn. (charge <> maj)

@ It is compatible with

Hilbg(Ry)= Y, g
weS,
ctype(P(w)")=u
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Connections to Frobg(Ry)

For CS,-module V, Frobg(V) is determined by
Hilbq(Ny V) = (ey, Frobg(V))
for all Y+ n, where

Ny= Y sgn(o)o.

ocSy
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Connections to Frobg(Ry)

For CS,-module V, Frobg(V) is determined by
Hilbq(Ny V) = (ey, Frobg(V))
for all Y+ n, where

Ny= Y sgn(o)o.

ocSy

Proposition (H. 2024+)
Let u,yF n. The set

{Nyx ™) | w e S, ctype(P(w)?)>u,
Des(w) C {y1, i + %2, s i+ + Y1} )

is a basis of NyR, where Des(w) = {i | w; > wji1}.
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Connections to Frobg(Ry)

Proposition (H. 2024+)
Let u,yF n. The set

{Nyx<™) | w € Sp, ctype(P(w)")>u,
Des(w) C{n, i+ ¥2s-- . A+ +Y-1}}-

is a basis of NjyR, where Des(w) = {i | w; > wjy1}.

Corollary (H. 2024+)
We have

Frobg(Ru) = Au[X; q]-
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Connections to Frobg(Ry)

Proposition (H. 2024+)
Let u,yF n. The set

{Nyxc(w) | weS,, ctype(P(w)!)>w,
Des(w) C{n,n+%,.. ., n+-+¥-1}}

is a basis of NyR, where Des(w) = {i | w; > wj1}.

Hllbq(N'leJ) _ Z qcharge(w) — <ey7 ’:I,u[X, q]>

weS,
ctype(P(w)")>u
Des(w)C{n,11+%2,-N++%-1}
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Example: u=(2,1,1), y=(2,2)

There are 5 SYT P that satisfy ctype(P?)>(2,1,1):

o
””
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Example: u=(2,1,1), y=(2,2)

There are 5 SYT P that satisfy ctype(P?)>(2,1,1):

oo B By Bl

Note that Des(w) = Des(Q(w)). There are 3 SYT @ such that
Des(Q) {2} = [n1}:

3 3|4
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Example: u=(2,1,1), y=(2,2)

There are 5 SYT P that satisfy ctype(P?)>(2,1,1):

oo B By Bl

Note that Des(w) = Des(Q(w)). There are 3 SYT @ such that
Des(Q) {2} = [n1}:

We have two pairs (P, Q) where P, Q are the same shape

_
Clmfim) « w=214

274 [3]4
() & w=2413,
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Example: u=(2,1,1), y=(2,2)

We have two pairs (P, Q) where P, Q are the same shape

2
Bl Blem) © w=2314.

(, ) & w=2413.

We compute the corresponding charge monomials:

w = 2314 — x“ ") = x,x2

w = 2413 — x“ ") = x,x,.
The basis of NyRy, is

{Ny(xzxf), Ny(xoxa)} = {xzxf — xle — xzx?? —|—x1x32 , XoXg — X1 X4 — X X3+ X1X3 } .
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