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Combinatorial definitions

A partition λ ⊢ n is a weakly decreasing sequence of positive integers that
sum to n.

The Young diagram of λ = (λ1,λ2, . . . ,λl ) is an left-aligned arrangement
of n boxes, with λi many boxes in row i .

λ = (4,2,1) ⊢ 7

Remark

The irreducible representations of Sn are indexed by partitions λ ⊢ n.
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Combinatorial definitions

A standard Young tableau (SYT) of shape λ ⊢ n is a filling of the Young
diagram of λ where {1, . . . ,n} appear exactly once and the entries are
increasing within the rows and columns.

6
2 5
1 3 4 7

.

The row reading word of T (rw(T )) is the word we get by concatenating
the row words from top to bottom.

rw

(
6
2 5
1 3 4 7

)
= 6251347.
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RSK correspondence

We denote the set of all SYT of size n as SYTn.

Remark: RSK

By Robinson-Schensted-Knuth correspondence we have

Sn ⇔{(P,Q) | P,Q ∈ SYTn,shape(P) = shape(Q)}

w 7→ (P(w),Q(w)).
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Coinvariant Ring

C[x1, . . . ,xn] = C[x] has a natural Sn action permuting the variables.

Definition

The coinvariant ring (of Type An−1) is

R1n = C[x]/⟨ek(x) for k ∈ {1, · · · ,n}⟩

where ek(x) = ∑
i1<i2<···<ik

xi1xi2 · · ·xik .

Remarks

R1n is isomorphic to...

Regular rep of Sn(ungraded)

Cohomology ring of the flag variety (as graded Sn reps)

Mitsuki Hanada A charge monomial basis of the Garsia-Procesi ring 5 / 31



Frobenius character

The Frobenius characteristic map is a map from (virtual) characters of Sn
to symmetric functions of degree n (with coefficients in Z) that takes

ch(Vλ ) 7→ sλ [X ].

The resulting symmetric function Frob(V ) is the Frobenius character of V .
Frob(V ) encodes the decomposition of V into irreducibles.

Frob(V(2,1)⊕V(1,1,1)) = s(2,1)+ s(1,1,1).
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Graded Frobenius character

For a graded CSn-module V =⊕d≥0Vd , the graded Frobenius character
Frobq(V ) is

Frobq(V ) = ∑
d≥0

qd Frob(Vd ).

Note

For the coinvariant ring, we have

Frobq(R1n) = ∑
T∈SYTn

qmaj(T )sshape(T ) = ∑
T∈SYTn

qcocharge(T )sshape(T ).
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Monomial bases of the coinvariant ring

Artin basis

{fσ (x) = ∏
i<j ,σi>σj

xσi
| σ ∈ Sn}

Corresponds to inversions

inv(σ) := |{(i , j) | i < j ,σi >σj}|.

.
⇒ deg(fσ (x)) = inv(σ).

Descent basis

{gσ (x) = ∏
i ,σi>σi+1

xσ1 · · ·xσi
| σ ∈ Sn}

Corresponds to major index

maj(σ) := ∑
i :σi>σi+1

i

⇒ deg(gσ (x)) = maj(σ).

Mitsuki Hanada A charge monomial basis of the Garsia-Procesi ring 8 / 31



Monomial bases of the Coinvariant ring

Artin basis

{fσ (x) = ∏
i<j ,σi>σj

xσi
| σ ∈ Sn}

Corresponds to inversions

Descent basis

{gσ (x) = ∏
i ,σi>σi+1

xσ1 · · ·xσi
| σ ∈ Sn}

Corresponds to major index

Remark

The permutation statistics inv and maj have the same distribution:

∑
σ∈Sn

qinv(σ) = ∑
σ∈Sn

qmaj(σ) = [n]q! = Hilbq(R1n).

→ Both bases are compatible with Hilbq(R1n)
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Garsia-Procesi Ring

Definition

For µ ⊢ n, the Garsia-Procesi ring Rµ is

Rµ = C[x]/Iµ

where the ideal Iµ is generated by

{ed (S) | S ⊂ {x1, . . . ,xn}, |S |−pn|S |(µ)< d ≤ |S |}

where pnk (µ) is the number of boxes that are not in the first (n−k)
columns of the Young diagram of µ.

Remark

Rµ are quotients of the coinvariant ring R1n arising from geometry
(Springer fibers ⊂ Flag variety.)
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Frobq(Rµ)

For µ ⊢ n, we have
Frobq(Rµ) = H̃µ [X ;q]

where H̃µ [X ;q] is the modified Hall-Littlewood polynomial.

Theorem (Lascoux 1989)

H̃µ [X ;q] = ∑
T∈SYTn

ctype(T t )�µ

qcharge(T )sshape(T t ),

where � denotes the dominance order on partitions of size n and T t

denotes the transpose of T .
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What is ctype(T )?

Theorem (Lascoux 1989)

H̃µ [X ;q] = ∑
T∈SYTn

ctype(T t )�µ

qcharge(T )sshape(T t ),

where � denotes the dominance order on partitions of size n and T t

denotes the transpose of T .

Remark

The catabolizability type ctype(T ) of a SYT is a partition.
We have a cocharge preserving bijection:

{T ∈ SYTn | ctype(T )�µ}↔ {S ∈ SSYT with weight µ}.
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What is charge?

For any permutation w ∈ Sn, we can construct its charge word c(w) by
labeling each letter in w in the following way:

label 1 by 0,

if we label i by k , we label i +1 by{
k+1 if i +1 is to the right of i

k if i is to the left of i

The word consisting of these labels is the charge word c(w).

Example:

w = 4 2 1 5 3
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What is charge?

For any permutation w ∈ Sn, we can construct its charge word c(w) by
labeling each letter in w in the following way:

label 1 by 0,

if we label i by k , we label i +1 by{
k+1 if i +1 is to the right of i

k if i is to the left of i

The word consisting of these labels is the charge word c(w).

Example:

w = 4 2 1 5 3

c(w) = 1 0 0 2 1
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What is charge?

Definition

charge(w) is the sum of the letters in c(w).

charge(T ) = charge(rw(T )).

Remarks

maj(rev(w−1)) = charge(w) (where rev(w) is the reverse word)

If P(w) = P(w ′), then charge(w) = charge(w ′).
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Coinvariant ring and Garsia-Procesi rings

Coinvariant ring R1n Garsia-Procesi Rµ

Frobq ∑
T∈SYTn

qcharge(T )sshape(T t )
∑

T∈SYTn
ctype(T t )�µ

qcharge(T )sshape(T t )

Hilbq [n]q! = ∑
w∈Sn

qcharge(w) ∑
w∈Sn

ctype(P(w)t )�µ

qcharge(w)
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Returning to monomial bases of R1n

Question

Are there subsets of monomial bases of R1n that are bases of Rµ?

Artin basis

{fσ (x) = ∏
i<j ,σi>σj

xσi
| σ ∈ Sn}

↓
Garsia-Procesi (1992)

Descent basis

{gσ (x) = ∏
i ,σi>σi+1

xσ1 · · ·xσi
| σ ∈ Sn}

↓
Carlsson-Chou(2024)

“shuffles of descent monomials”
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Returning to monomial bases of R1n

Question

Are there subsets of monomial bases of R1n that are bases of Rµ?

Artin basis

{fσ (x) = ∏
i<j ,σi>σj

xσi
| σ ∈ Sn}

↓
Garsia-Procesi (1992)

Descent basis

{gσ (x) = ∏
i ,σi>σi+1

xσ1 · · ·xσi
| σ ∈ Sn}

↓
Carlsson-Chou(2024)

“shuffles of descent monomials”

Remark

Neither of these bases have direct connections to Frobq(Rµ) or Hilbq(Rµ)!
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Returning to monomial bases of R1n

Question

Find a description of a monomial basis of Rµ that is

a subset of the Artin basis/Descent basis,

compatible with

Frobq(Rµ) = ∑
T∈SYTn

ctype(T t )�µ

qcharge(T )sshape(T t )

Hilbq(Rµ) = ∑
w∈Sn

ctype(P(w)t )�µ

qcharge(w).

.
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Charge monomial basis of Rµ

Theorem (H. 2024+)

The set
{xc(w) | w ∈ Sn, ctype(P(w)t)�µ}

is a monomial basis of Rµ .

Remark

This basis coincides with the basis given by Carlsson-Chou.
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Example: Charge monomial basis of R

Theorem (H. 2024+)

The set {xc(w) | w ∈ Sn, ctype(P(w)t)�µ} is a monomial basis of Rµ .

We know ctype

(
4
3
1 2

)
= .

There are three different w ∈ Sn such that P(w) =

(
4
3
1 2

)t

= 2
1 3 4 :

w = 2134

w = 2314

w = 2341
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Example: Charge monomial basis of R

Theorem (H. 2024+)

The set {xc(w) | w ∈ Sn, ctype(P(w)t)�µ} is a monomial basis of Rµ .

We know ctype

(
4
3
1 2

)
= .

There are three different w ∈ Sn such that P(w) =

(
4
3
1 2

)t

= 2
1 3 4 :

w = 2134→ c(w) = 0012

w = 2314

w = 2341
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Example: Charge monomial basis of R

Theorem (H. 2024+)

The set {xc(w) | w ∈ Sn, ctype(P(w)t)�µ} is a monomial basis of Rµ .

We know ctype

(
4
3
1 2

)
= .

There are three different w ∈ Sn such that P(w) =

(
4
3
1 2

)t

= 2
1 3 4 :

w = 2134→ c(w) = 0012

w = 2314→ c(w) = 0102

w = 2341→ c(w) = 0120

Thus x3x
2
4 ,x2x

2
4 ,x2x

2
3 are all in {xc(w) | w ∈ Sn, ctype(P(w)t)�µ}
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Example: Charge monomial basis of R

S {w | P(w) = S} {xc(w) | P(w) = S}

2
1 3 4 {2134, 2314, 2341} {x3x24 , x2x24 , x2x23}

2 4
1 3 {2143 , 2413} {x3x4, x2x4}

4
2
1 3

{4213, 4231, 2431} {x1x4, x1x3, x2x3}

3
2
1 4

{3214, 3241 , 3421} {x4, x3, x2}

4
3
2
1

{4321} {1}
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Charge monomial basis of Rµ

Theorem (H. 2024+)

The set
{xc(w) | w ∈ Sn, ctype(P(w)t)�µ}

is a monomial basis of Rµ .

Why is this basis nice?

It is a subset of the descent basis of R1n . (charge ↔ maj)

It is compatible with

Hilbq(Rµ) = ∑
w∈Sn

ctype(P(w)t )�µ

qcharge(w).
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Connections to Frobq(Rµ)

For CSn-module V , Frobq(V ) is determined by

Hilbq(NγV ) = ⟨eγ ,Frobq(V )⟩

for all γ ⊢ n, where
Nγ = ∑

σ∈Sγ

sgn(σ)σ .

Proposition (H. 2024+)

Let µ,γ ⊢ n. The set

{Nγx
c(w) | w ∈ Sn, ctype(P(w)t)�µ,

Des(w)⊂ {γ1,γ1+ γ2, . . . ,γ1+ · · ·+ γl−1}}.

is a basis of NγRµ where Des(w) = {i | wi > wi+1}.
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Connections to Frobq(Rµ)

Proposition (H. 2024+)

Let µ,γ ⊢ n. The set

{Nγx
c(w) | w ∈ Sn, ctype(P(w)t)�µ,

Des(w)⊂ {γ1,γ1+ γ2, . . . ,γ1+ · · ·+ γl−1}}.

is a basis of NγRµ where Des(w) = {i | wi > wi+1}.

Corollary (H. 2024+)

We have
Frobq(Rµ) = H̃µ [X ;q].
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Connections to Frobq(Rµ)

Proposition (H. 2024+)

Let µ,γ ⊢ n. The set

{Nγx
c(w) | w ∈ Sn, ctype(P(w)t)�µ,

Des(w)⊂ {γ1,γ1+ γ2, . . . ,γ1+ · · ·+ γl−1}}.

is a basis of NγRµ where Des(w) = {i | wi > wi+1}.

Hilbq(NγRµ) = ∑
w∈Sn

ctype(P(w)t )�µ

Des(w)⊂{γ1,γ1+γ2,...,γ1+···+γl−1}

qcharge(w) = ⟨eγ , H̃µ [X ;q]⟩.
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Example: µ = (2,1,1), γ = (2,2)

There are 5 SYT P that satisfy ctype(Pt)� (2,1,1):

2
1 3 4 , 2 4

1 3 ,
4
2
1 3

,
3
2
1 4

,

4
3
2
1

.

Note that Des(w) = Des(Q(w)). There are 3 SYT Q such that
Des(Q)⊂ {2}= {γ1}:

1 2 3 4 , 3
1 2 4 , 3 4

1 2 .

We have two pairs (P,Q) where P,Q are the same shape(
2
1 3 4 ,

3
1 2 4

)
↔ w = 2314,(

2 4
1 3 ,

3 4
1 2

)
↔ w = 2413.
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Example: µ = (2,1,1), γ = (2,2)

We have two pairs (P,Q) where P,Q are the same shape(
2
1 3 4 ,

3
1 2 4

)
↔ w = 2314,(

2 4
1 3 ,

3 4
1 2

)
↔ w = 2413.

We compute the corresponding charge monomials:

w = 2314→ xc(w) = x2x
2
4

w = 2413→ xc(w) = x2x4.

The basis of NγRµ is

{Nγ(x2x
2
4 ),Nγ(x2x4)}= {x2x24 −x1x

2
4 −x2x

2
3 +x1x

2
3 ,x2x4−x1x4−x2x3+x1x3}.
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Thank you!
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