

A charge monomial basis of the Garsia-Procesi ring

Mitsuki Hanada

UC Berkeley

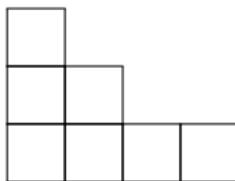
CAAC 2025
arXiv: 2410.15514

Combinatorial definitions

A *partition* $\lambda \vdash n$ is a weakly decreasing sequence of positive integers that sum to n .

The *Young diagram* of $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ is an left-aligned arrangement of n boxes, with λ_i many boxes in row i .

$$\lambda = (4, 2, 1) \vdash 7$$



Remark

The irreducible representations of S_n are indexed by partitions $\lambda \vdash n$.

Combinatorial definitions

A *standard Young tableau* (SYT) of shape $\lambda \vdash n$ is a filling of the Young diagram of λ where $\{1, \dots, n\}$ appear exactly once and the entries are increasing within the rows and columns.

6			
2	5		
1	3	4	7

The *row reading word* of T ($\text{rw}(T)$) is the word we get by concatenating the row words from top to bottom.

$$\text{rw} \left(\begin{array}{cccc} 6 \\ 2 & 5 \\ 1 & 3 & 4 & 7 \end{array} \right) = 6251347.$$

RSK correspondence

We denote the set of all SYT of size n as SYT_n .

Remark: RSK

By Robinson-Schensted-Knuth correspondence we have

$$S_n \Leftrightarrow \{(P, Q) \mid P, Q \in \text{SYT}_n, \text{shape}(P) = \text{shape}(Q)\}$$

$$w \mapsto (P(w), Q(w)).$$

Coinvariant Ring

$\mathbb{C}[x_1, \dots, x_n] = \mathbb{C}[\mathbf{x}]$ has a natural S_n action permuting the variables.

Definition

The *coinvariant ring* (of Type A_{n-1}) is

$$R_{1^n} = \mathbb{C}[\mathbf{x}] / \langle e_k(\mathbf{x}) \text{ for } k \in \{1, \dots, n\} \rangle$$

where $e_k(\mathbf{x}) = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} x_{i_2} \cdots x_{i_k}$.

Remarks

R_{1^n} is isomorphic to...

- Regular rep of S_n (ungraded)
- Cohomology ring of the flag variety (as graded S_n reps)

Frobenius character

The *Frobenius characteristic map* is a map from (virtual) characters of S_n to symmetric functions of degree n (with coefficients in \mathbb{Z}) that takes

$$\mathrm{ch}(V_\lambda) \mapsto s_\lambda[X].$$

The resulting symmetric function $\mathrm{Frob}(V)$ is the *Frobenius character* of V . $\mathrm{Frob}(V)$ encodes the decomposition of V into irreducibles.

$$\mathrm{Frob}(V_{(2,1)} \oplus V_{(1,1,1)}) = s_{(2,1)} + s_{(1,1,1)}.$$

Graded Frobenius character

For a graded $\mathbb{C}S_n$ -module $V = \bigoplus_{d \geq 0} V_d$, the *graded Frobenius character* $\text{Frob}_q(V)$ is

$$\text{Frob}_q(V) = \sum_{d \geq 0} q^d \text{Frob}(V_d).$$

Note

For the coinvariant ring, we have

$$\text{Frob}_q(R_{1^n}) = \sum_{T \in \text{SYT}_n} q^{\text{maj}(T)} s_{\text{shape}(T)} = \sum_{T \in \text{SYT}_n} q^{\text{cocharge}(T)} s_{\text{shape}(T)}.$$

Monomial bases of the coinvariant ring

- Artin basis

$$\{f_\sigma(\mathbf{x}) = \prod_{i < j, \sigma_i > \sigma_j} x_{\sigma_i} \mid \sigma \in S_n\}$$

Corresponds to *inversions*

$$\text{inv}(\sigma) := |\{(i, j) \mid i < j, \sigma_i > \sigma_j\}|.$$

$$\Rightarrow \deg(f_\sigma(\mathbf{x})) = \text{inv}(\sigma).$$

- Descent basis

$$\{g_\sigma(\mathbf{x}) = \prod_{i, \sigma_i > \sigma_{i+1}} x_{\sigma_1} \cdots x_{\sigma_i} \mid \sigma \in S_n\}$$

Corresponds to *major index*

$$\text{maj}(\sigma) := \sum_{i: \sigma_i > \sigma_{i+1}} i$$

$$\Rightarrow \deg(g_\sigma(\mathbf{x})) = \text{maj}(\sigma).$$

Monomial bases of the Coinvariant ring

- Artin basis

$$\{f_\sigma(\mathbf{x}) = \prod_{i < j, \sigma_i > \sigma_j} x_{\sigma_i} \mid \sigma \in S_n\}$$

Corresponds to *inversions*

- Descent basis

$$\{g_\sigma(\mathbf{x}) = \prod_{i, \sigma_i > \sigma_{i+1}} x_{\sigma_1} \cdots x_{\sigma_i} \mid \sigma \in S_n\}$$

Corresponds to *major index*

Remark

The permutation statistics inv and maj have the same distribution:

$$\sum_{\sigma \in S_n} q^{\text{inv}(\sigma)} = \sum_{\sigma \in S_n} q^{\text{maj}(\sigma)} = [n]_q! = \text{Hilb}_q(R_{1^n}).$$

→ Both bases are compatible with $\text{Hilb}_q(R_{1^n})$

Garsia-Procesi Ring

Definition

For $\mu \vdash n$, the *Garsia-Procesi ring* R_μ is

$$R_\mu = \mathbb{C}[\mathbf{x}]/I_\mu$$

where the ideal I_μ is generated by

$$\{e_d(S) \mid S \subset \{x_1, \dots, x_n\}, |S| - p_{|S|}^n(\mu) < d \leq |S|\}$$

where $p_k^n(\mu)$ is the number of boxes that are **not** in the first $(n - k)$ columns of the Young diagram of μ .

Garsia-Procesi Ring

Definition

For $\mu \vdash n$, the *Garsia-Procesi ring* R_μ is

$$R_\mu = \mathbb{C}[\mathbf{x}]/I_\mu$$

where the ideal I_μ is generated by

$$\{e_d(S) \mid S \subset \{x_1, \dots, x_n\}, |S| - p_{|S|}^n(\mu) < d \leq |S|\}$$

where $p_k^n(\mu)$ is the number of boxes that are **not** in the first $(n-k)$ columns of the Young diagram of μ .

Remark

R_μ are quotients of the coinvariant ring R_{1^n} arising from geometry (Springer fibers \subset Flag variety.)

$$\text{Frob}_q(R_\mu)$$

For $\mu \vdash n$, we have

$$\text{Frob}_q(R_\mu) = \tilde{H}_\mu[X; q]$$

where $\tilde{H}_\mu[X; q]$ is the *modified Hall-Littlewood polynomial*.

Theorem (Lascoux 1989)

$$\tilde{H}_\mu[X; q] = \sum_{\substack{T \in \text{SYT}_n \\ \text{ctype}(T^t) \trianglerighteq \mu}} q^{\text{charge}(T)} s_{\text{shape}(T^t)},$$

where \trianglerighteq denotes the dominance order on partitions of size n and T^t denotes the transpose of T .

What is $\text{ctype}(T)$?

Theorem (Lascoux 1989)

$$\tilde{H}_\mu[X; q] = \sum_{\substack{T \in \text{SYT}_n \\ \text{ctype}(T^t) \trianglerighteq \mu}} q^{\text{charge}(T)} s_{\text{shape}(T^t)},$$

where \trianglerighteq denotes the dominance order on partitions of size n and T^t denotes the transpose of T .

What is $\text{ctype}(T)$?

Theorem (Lascoux 1989)

$$\tilde{H}_\mu[X; q] = \sum_{\substack{T \in \text{SYT}_n \\ \text{ctype}(T^t) \trianglerighteq \mu}} q^{\text{charge}(T)} s_{\text{shape}(T^t)},$$

where \trianglerighteq denotes the dominance order on partitions of size n and T^t denotes the transpose of T .

Remark

The *catabolizability type* $\text{ctype}(T)$ of a SYT is a partition.
We have a cocharge preserving bijection:

$$\{T \in \text{SYT}_n \mid \text{ctype}(T) \trianglerighteq \mu\} \leftrightarrow \{S \in \text{SSYT} \text{ with weight } \mu\}.$$

What is charge?

For any permutation $w \in S_n$, we can construct its *charge word* $c(w)$ by labeling each letter in w in the following way:

- label 1 by 0,
- if we label i by k , we label $i+1$ by
$$\begin{cases} k+1 & \text{if } i+1 \text{ is to the right of } i \\ k & \text{if } i \text{ is to the left of } i \end{cases}$$

The word consisting of these labels is the charge word $c(w)$.

Example:

$$w = 4 \ 2 \ 1 \ 5 \ 3$$

What is charge?

For any permutation $w \in S_n$, we can construct its *charge word* $c(w)$ by labeling each letter in w in the following way:

- label 1 by 0,
- if we label i by k , we label $i+1$ by
$$\begin{cases} k+1 & \text{if } i+1 \text{ is to the right of } i \\ k & \text{if } i \text{ is to the left of } i \end{cases}$$

The word consisting of these labels is the charge word $c(w)$.

Example:

$$\begin{aligned} w &= 4 \ 2 \ 1 \ 5 \ 3 \\ c(w) &= 1 \ 0 \ 0 \ 2 \ 1 \end{aligned}$$

What is charge?

Definition

- $\text{charge}(w)$ is the sum of the letters in $c(w)$.
- $\text{charge}(T) = \text{charge}(\text{rw}(T))$.

What is charge?

Definition

- $\text{charge}(w)$ is the sum of the letters in $c(w)$.
- $\text{charge}(T) = \text{charge}(\text{rw}(T))$.

Remarks

- $\text{maj}(\text{rev}(w^{-1})) = \text{charge}(w)$ (where $\text{rev}(w)$ is the reverse word)
- If $P(w) = P(w')$, then $\text{charge}(w) = \text{charge}(w')$.

Coinvariant ring and Garsia-Procesi rings

	Coinvariant ring R_{1^n}	Garsia-Procesi R_μ
Frob_q	$\sum_{T \in \text{SYT}_n} q^{\text{charge}(T)} s_{\text{shape}(T^t)}$	$\sum_{\substack{T \in \text{SYT}_n \\ \text{ctype}(T^t) \trianglerighteq \mu}} q^{\text{charge}(T)} s_{\text{shape}(T^t)}$
Hilb_q	$[n]_q! = \sum_{w \in S_n} q^{\text{charge}(w)}$	$\sum_{\substack{w \in S_n \\ \text{ctype}(P(w)^t) \trianglerighteq \mu}} q^{\text{charge}(w)}$

Returning to monomial bases of R_{1^n}

Question

Are there subsets of monomial bases of R_{1^n} that are bases of R_μ ?

Returning to monomial bases of R_{1^n}

Question

Are there subsets of monomial bases of R_{1^n} that are bases of R_μ ?

- Artin basis

$$\{f_\sigma(\mathbf{x}) = \prod_{i < j, \sigma_i > \sigma_j} x_{\sigma_i} \mid \sigma \in S_n\}$$

↓
Garsia-Procesi (1992)

- Descent basis

$$\{g_\sigma(\mathbf{x}) = \prod_{i, \sigma_i > \sigma_{i+1}} x_{\sigma_1} \cdots x_{\sigma_i} \mid \sigma \in S_n\}$$

↓
Carlsson-Chou(2024)
“shuffles of descent monomials”

Returning to monomial bases of R_{1^n}

Question

Are there subsets of monomial bases of R_{1^n} that are bases of R_μ ?

- Artin basis

$$\{f_\sigma(\mathbf{x}) = \prod_{i < j, \sigma_i > \sigma_j} x_{\sigma_i} \mid \sigma \in S_n\}$$

Garsia-Procesi (1992)

- Descent basis

$$\{g_\sigma(\mathbf{x}) = \prod_{i, \sigma_i > \sigma_{i+1}} x_{\sigma_1} \cdots x_{\sigma_i} \mid \sigma \in S_n\}$$

Carlsson-Chou (2024)

“shuffles of descent monomials”

Remark

Neither of these bases have direct connections to $\text{Frob}_q(R_\mu)$ or $\text{Hilb}_q(R_\mu)$!

Returning to monomial bases of R_{1^n}

Question

Find a description of a monomial basis of R_μ that is

- a subset of the Artin basis/Descent basis,
- compatible with

$$\text{Frob}_q(R_\mu) = \sum_{\substack{T \in \text{SYT}_n \\ \text{ctype}(T^t) \trianglerighteq \mu}} q^{\text{charge}(T)} s_{\text{shape}(T^t)}$$

$$\text{Hilb}_q(R_\mu) = \sum_{\substack{w \in S_n \\ \text{ctype}(P(w)^t) \trianglerighteq \mu}} q^{\text{charge}(w)}.$$

Charge monomial basis of R_μ

Theorem (H. 2024+)

The set

$$\{\mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \succeq \mu\}$$

is a monomial basis of R_μ .

Charge monomial basis of R_μ

Theorem (H. 2024+)

The set

$$\{\mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \geq \mu\}$$

is a monomial basis of R_μ .

Remark

This basis coincides with the basis given by Carlsson-Chou.

Example: Charge monomial basis of R_{\square}

Theorem (H. 2024+)

The set $\{x^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \trianglerighteq \mu\}$ is a monomial basis of R_μ .

We know $\text{ctype} \left(\begin{array}{c|cc} 4 & & \\ \hline 3 & & \\ \hline 1 & 2 & \end{array} \right) = \begin{array}{c|cc} & & \\ \hline & & \\ \hline & & \end{array}$.

Example: Charge monomial basis of R_{μ}

Theorem (H. 2024+)

The set $\{x^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \trianglerighteq \mu\}$ is a monomial basis of R_{μ} .

We know $\text{ctype}\left(\begin{array}{c} 4 \\ 3 \\ 1 \ 2 \end{array}\right) = \begin{array}{c} \square \\ \square \\ \square \\ \square \end{array}$.

There are three different $w \in S_4$ such that $P(w) = \left(\begin{array}{c} 4 \\ 3 \\ 1 \ 2 \end{array}\right)^t = \begin{array}{c} \square \\ \square \\ \square \\ \square \end{array} = \begin{array}{c} 2 \\ 1 \ 3 \ 4 \end{array}$:

$$w = 2134$$

$$w = 2314$$

$$w = 2341$$

Example: Charge monomial basis of R_{\boxplus}

Theorem (H. 2024+)

The set $\{x^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \supseteq \mu\}$ is a monomial basis of R_{μ} .

We know $\text{ctype}\left(\begin{array}{c} 4 \\ 3 \\ 1 \ 2 \end{array}\right) = \begin{array}{c} \square \\ \square \\ \square \end{array}$.

There are three different $w \in S_4$ such that $P(w) = \left(\begin{array}{c} 4 \\ 3 \\ 1 \ 2 \end{array}\right)^t = \begin{array}{c} \square \\ \square \\ \square \end{array} \begin{array}{c} 2 \\ 1 \ 3 \ 4 \end{array}$:

$$w = 2134 \rightarrow c(w) = 0012$$

$$w = 2314$$

$$w = 2341$$

Example: Charge monomial basis of R_{\boxplus}

Theorem (H. 2024+)

The set $\{\mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \sqsupseteq \mu\}$ is a monomial basis of R_{μ} .

We know $\text{ctype}\left(\begin{array}{c} 4 \\ 3 \\ 1 \\ 2 \end{array}\right) = \begin{array}{c} \square \\ \square \\ \square \\ \square \end{array}$.

There are three different $w \in S_n$ such that $P(w) = \left(\begin{array}{c} 4 \\ 3 \\ 1 \\ 2 \end{array}\right)^t = \begin{array}{c} \square \\ \square \\ \square \\ \square \end{array}$:

$$w = 2134 \rightarrow c(w) = 0012$$

$$w = 2314 \rightarrow c(w) = 0102$$

$$w = 2341 \rightarrow c(w) = 0120$$

Example: Charge monomial basis of R_{\boxplus}

Theorem (H. 2024+)

The set $\{\mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \trianglerighteq \mu\}$ is a monomial basis of R_{μ} .

We know $\text{ctype}\left(\begin{array}{c} 4 \\ 3 \\ 1 \\ 2 \end{array}\right) = \begin{array}{c} \square \\ \square \\ \square \\ \square \end{array}$.

There are three different $w \in S_n$ such that $P(w) = \left(\begin{array}{c} 4 \\ 3 \\ 1 \\ 2 \end{array}\right)^t = \begin{array}{c} \square \\ \square \\ \square \\ \square \end{array}$:

$$w = 2134 \rightarrow c(w) = 0012$$

$$w = 2314 \rightarrow c(w) = 0102$$

$$w = 2341 \rightarrow c(w) = 0120$$

Thus $x_3x_4^2, x_2x_4^2, x_2x_3^2$ are all in $\{\mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \trianglerighteq \mu\}$

Example: Charge monomial basis of R_{\square}

S	$\{w \mid P(w) = S\}$	$\{x^{c(w)} \mid P(w) = S\}$
$\begin{array}{ c c c } \hline 2 & & \\ \hline 1 & 3 & 4 \\ \hline \end{array}$	{2134, 2314, 2341}	$\{x_3x_4^2, x_2x_4^2, x_2x_3^2\}$
$\begin{array}{ c c } \hline 2 & 4 \\ \hline 1 & 3 \\ \hline \end{array}$	{2143, 2413}	$\{x_3x_4, x_2x_4\}$
$\begin{array}{ c c } \hline 4 & \\ \hline 2 & \\ \hline 1 & 3 \\ \hline \end{array}$	{4213, 4231, 2431}	$\{x_1x_4, x_1x_3, x_2x_3\}$
$\begin{array}{ c c } \hline 3 & \\ \hline 2 & \\ \hline 1 & 4 \\ \hline \end{array}$	{3214, 3241, 3421}	$\{x_4, x_3, x_2\}$
$\begin{array}{ c } \hline 4 \\ \hline 3 \\ \hline 2 \\ \hline 1 \\ \hline \end{array}$	{4321}	{1}

Charge monomial basis of R_μ

Theorem (H. 2024+)

The set

$$\{\mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \supseteq \mu\}$$

is a monomial basis of R_μ .

Why is this basis nice?

Charge monomial basis of R_μ

Theorem (H. 2024+)

The set

$$\{\mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \supseteq \mu\}$$

is a monomial basis of R_μ .

Why is this basis nice?

- It is a subset of the descent basis of R_{1^n} . (charge \leftrightarrow maj)

Charge monomial basis of R_μ

Theorem (H. 2024+)

The set

$$\{\mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \trianglerighteq \mu\}$$

is a monomial basis of R_μ .

Why is this basis nice?

- It is a subset of the descent basis of R_{1^n} . (charge \leftrightarrow maj)
- It is compatible with

$$\text{Hilb}_q(R_\mu) = \sum_{\substack{w \in S_n \\ \text{ctype}(P(w)^t) \trianglerighteq \mu}} q^{\text{charge}(w)}.$$

Connections to $\text{Frob}_q(R_\mu)$

For $\mathbb{C}S_n$ -module V , $\text{Frob}_q(V)$ is determined by

$$\text{Hilb}_q(N_\gamma V) = \langle e_\gamma, \text{Frob}_q(V) \rangle$$

for all $\gamma \vdash n$, where

$$N_\gamma = \sum_{\sigma \in S_\gamma} \text{sgn}(\sigma) \sigma.$$

Connections to $\text{Frob}_q(R_\mu)$

For $\mathbb{C}S_n$ -module V , $\text{Frob}_q(V)$ is determined by

$$\text{Hilb}_q(N_\gamma V) = \langle e_\gamma, \text{Frob}_q(V) \rangle$$

for all $\gamma \vdash n$, where

$$N_\gamma = \sum_{\sigma \in S_\gamma} \text{sgn}(\sigma) \sigma.$$

Proposition (H. 2024+)

Let $\mu, \gamma \vdash n$. The set

$$\{N_\gamma x^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \trianglerighteq \mu, \\ \text{Des}(w) \subset \{\gamma_1, \gamma_1 + \gamma_2, \dots, \gamma_1 + \dots + \gamma_{i-1}\}\}.$$

is a basis of $N_\gamma R_\mu$ where $\text{Des}(w) = \{i \mid w_i > w_{i+1}\}$.

Connections to $\text{Frob}_q(R_\mu)$

Proposition (H. 2024+)

Let $\mu, \gamma \vdash n$. The set

$$\begin{aligned} & \{N_\gamma \mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \trianglerighteq \mu, \\ & \quad \text{Des}(w) \subset \{\gamma_1, \gamma_1 + \gamma_2, \dots, \gamma_1 + \dots + \gamma_{l-1}\}\}. \end{aligned}$$

is a basis of $N_\gamma R_\mu$ where $\text{Des}(w) = \{i \mid w_i > w_{i+1}\}$.

Corollary (H. 2024+)

We have

$$\text{Frob}_q(R_\mu) = \tilde{H}_\mu[X; q].$$

Connections to $\text{Frob}_{\mathbf{q}}(R_{\mu})$

Proposition (H. 2024+)

Let $\mu, \gamma \vdash n$. The set

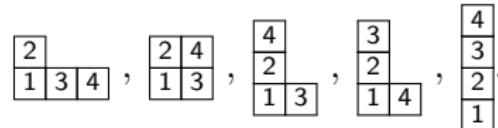
$$\begin{aligned} \{N_{\gamma} \mathbf{x}^{c(w)} \mid w \in S_n, \text{ctype}(P(w)^t) \trianglerighteq \mu, \\ \text{Des}(w) \subset \{\gamma_1, \gamma_1 + \gamma_2, \dots, \gamma_1 + \dots + \gamma_{i-1}\}\}. \end{aligned}$$

is a basis of $N_{\gamma} R_{\mu}$ where $\text{Des}(w) = \{i \mid w_i > w_{i+1}\}$.

$$\text{Hilb}_{\mathbf{q}}(N_{\gamma} R_{\mu}) = \sum_{\substack{w \in S_n \\ \text{ctype}(P(w)^t) \trianglerighteq \mu \\ \text{Des}(w) \subset \{\gamma_1, \gamma_1 + \gamma_2, \dots, \gamma_1 + \dots + \gamma_{i-1}\}}} q^{\text{charge}(w)} = \langle e_{\gamma}, \tilde{H}_{\mu}[X; q] \rangle.$$

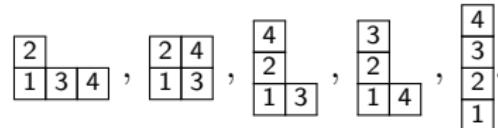
Example: $\mu = (2, 1, 1)$, $\gamma = (2, 2)$

There are 5 SYT P that satisfy $\text{ctype}(P^t) \trianglerighteq (2, 1, 1)$:

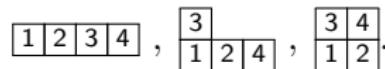


Example: $\mu = (2, 1, 1)$, $\gamma = (2, 2)$

There are 5 SYT P that satisfy $\text{ctype}(P^t) \trianglerighteq (2, 1, 1)$:

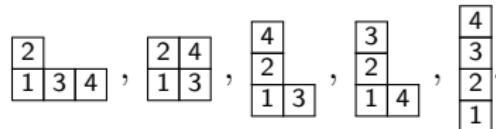


Note that $\text{Des}(w) = \text{Des}(Q(w))$. There are 3 SYT Q such that $\text{Des}(Q) \subset \{2\} = \{\gamma_1\}$:

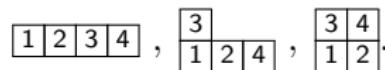


Example: $\mu = (2, 1, 1)$, $\gamma = (2, 2)$

There are 5 SYT P that satisfy $\text{ctype}(P^t) \supseteq (2, 1, 1)$:



Note that $\text{Des}(w) = \text{Des}(Q(w))$. There are 3 SYT Q such that $\text{Des}(Q) \subset \{2\} = \{\gamma_1\}$:



We have two pairs (P, Q) where P, Q are the same shape

$$\left(\begin{array}{|c|c|c|} \hline 2 & & \\ \hline 1 & 3 & 4 \\ \hline \end{array} \middle| \begin{array}{|c|c|c|} \hline 3 & & \\ \hline 1 & 2 & 4 \\ \hline \end{array} \right) \leftrightarrow w = 2314,$$

$$\left(\begin{array}{|c|c|} \hline 2 & 4 \\ \hline 1 & 3 \\ \hline \end{array} \middle| \begin{array}{|c|c|} \hline 3 & 4 \\ \hline 1 & 2 \\ \hline \end{array} \right) \leftrightarrow w = 2413.$$

Example: $\mu = (2, 1, 1)$, $\gamma = (2, 2)$

We have two pairs (P, Q) where P, Q are the same shape

$$\left(\begin{array}{|c|c|c|} \hline 2 & & \\ \hline 1 & 3 & 4 \\ \hline \end{array}, \begin{array}{|c|c|c|} \hline 3 & & \\ \hline 1 & 2 & 4 \\ \hline \end{array} \right) \leftrightarrow w = 2314,$$

$$\left(\begin{array}{|c|c|} \hline 2 & 4 \\ \hline 1 & 3 \\ \hline \end{array}, \begin{array}{|c|c|} \hline 3 & 4 \\ \hline 1 & 2 \\ \hline \end{array} \right) \leftrightarrow w = 2413.$$

We compute the corresponding charge monomials:

$$w = 2314 \rightarrow \mathbf{x}^{c(w)} = x_2 x_4^2$$

$$w = 2413 \rightarrow \mathbf{x}^{c(w)} = x_2 x_4.$$

The basis of $N_\gamma R_\mu$ is

$$\{N_\gamma(x_2 x_4^2), N_\gamma(x_2 x_4)\} = \{x_2 x_4^2 - x_1 x_4^2 - x_2 x_3^2 + x_1 x_3^2, x_2 x_4 - x_1 x_4 - x_2 x_3 + x_1 x_3\}.$$

Thank you!