
Math H54 Honors Linear Algebra and Differential Equations Spring, 2004
Prof. Haiman

Homework 3 Solutions

1.5 Ex. 30. 1 0 0
0 0 1
0 1 0

A =

 1 0 0
2 1 0
−2 0 1

3 −2 −4
0 5 10
0 0 −5


1.5 Ex. 36.

x =


−2
−4
−1
2


1.5 Ex. 39, 43. For 39, if L = U , this matrix is both upper and lower triangular, hence
diagonal. Moreover, since it is lower unit triangular, it must be the identity matrix. For
43, suppose LU = L′U ′. We assume A is invertible (this really should have been stated
in the problem), so L, L′, U and U ′ are also invertible (the L’s are in any case). Then
(L′)−1L = U ′(U−1), the matrix on the left-hand side is lower unit triangular, and the matrix
on the right-hand side is upper-triangular. By Ex. 39, both matrices are the identity, so
L = L′ and U = U ′.

1.6 Ex. 20. (a) (B + BT )T = BT + (BT )T = B + BT . (b) (B − BT )T = BT − (BT )T =
−B+BT = −(B−BT ). Ex. 22 (BBT )T = (BT )T BT = BBT ; (BT B)T = BT (BT )T = BT B.
Note that both products make sense since BT is n×m if B is m× n.

2.1 Ex. 20 54

2.2 Ex. 25 Since −A = (−In)A, and det(−In) = (−1)n, we have det(−A) = (−1)n det(A).
Thus det(−A) = det(A) if and only if n is even, or A is singular.

Problem A. “Since we can now calculate det A by row reduction for any square matrix A,
we know that a determinant function exists.” Wrong. What this shows is that a determinant
function is unique if it exists.

“On the other hand, a matrix can be row reduced in several ways. Perhaps these different
row reductions will give different determinants.” It is true that we have not yet shown that
different row reductions always give the same answer. However, in order to prove this, we
need to show that a function with the properties in Definition (2.2) exists. Then, since
we have shown that row reduction is a valid way to compute any such function, different
row reductions must give the same answer. So the thing we need still to prove is that a
determinant function exists.

The error continues in Section 2.3. Theorem 2.27 is not stated correctly. Instead it should
read “For any square matrix A, if we define det A to be the sum of all signed elementary
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products from A, then det A defined in this way is a determinant function—in other words,
it has the properties in Definition 2.2.”

Corollary 2.28 should read “A determinant function exists.”
I’ll prove Theorem 2.27 (or rather, the correct version of it) in the lecture, since it’s not

done in the book.

Problem B. If A has integer entries, then det(A) is an integer. Unfortunately, this is not
obvious from the method of calculation using row reduction. However, it is obvious from the
formula for the determinant as a sum of signed elementary products, discussed in Section
2.2. Sorry about that—the homework got a bit ahead of the lecture here.

Anyway, granting the above fact, if A and A−1 are both integer matrices, then det(A) and
det(A−1) are both integers, and det(A) det(A−1) = det(In) = 1. The only integer solutions
of pq = 1 are p = q = ±1, so det(A) = ±1.

Problem C. (a) Subtract 2×(row 2) from row 3, then subtract row 3 from row 4, and finally
add 3×(row 1) to row 4. This gives the matrix W .

(b) Rearranging the rows of W in the order (row 2, row 3, row 1, row 4) gives a row-
echelon matrix U . Hence W = PU , where P is the permutation that performs the inverse
row rearrangement:

W =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




2 0 1 0 4
0 1 1 7 −4
0 0 0 2 −1
0 0 0 0 2

 .

(c) We want A = LW , or W = L−1A, so L is the matrix that does the inverse of the row
operations in part (a), namely

A =


1 0 0 0
0 1 0 0
0 2 1 0
−3 0 1 1

W =


1 0 0 0
0 1 0 0
0 2 1 0
−3 0 1 1




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




2 0 1 0 4
0 1 1 7 −4
0 0 0 2 −1
0 0 0 0 2

 .

(d) One simple possibility is to take

A =

[
1 0
1 1

]
.

Then A is already lower unit triangular, so one PA = LU factorization is simply[
1 0
0 1

]
A =

[
1 0
1 1

] [
1 0
0 1

]
.

To find a second factorization, switch the rows of A before row reducing. This gives[
0 1
1 0

]
A =

[
1 0
1 1

] [
1 1
0 −1

]
.
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