
Math H54 Honors Linear Algebra and Differential Equations Spring, 2004
Prof. Haiman

Solutions to final exam review problems

1. The 6 matrices below form a basis:

A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 1 0
0 0 0

 , A3 =

0 0 0
0 0 0
0 0 1


A4 =

0 1 0
1 0 0
0 0 0

 , A5 =

0 0 1
0 0 0
1 0 0

 , A6 =

0 0 0
0 0 1
0 1 0

 .

To prove that they form a basis it is enough to observe that every symmetric matrix is a
linear combination of the above with unique coefficients:a d e

d b f
e f c

 = aA1 + bA2 + cA3 + dA4 + eA5 + fA6.

2. We can take V = NS(A), W = NS(B) for some 2×7 matrices A, B. Then V ∩W = NS(X),
where

X =

[
A
B

]
.

Since X is a 4× 7 matrix, we have rank(X) ≤ 4, and hence dim(V ∩W ) = 7− rank(X) ≥ 3.

3. Any vector x ∈ NS(A) ∩ RS(A) satisfies xTx = ‖x‖ = 0, hence x = 0.

4. (a) For every vector v ∈ Rn, we have A(Av) = Av, which shows that Av belongs to
the λ = 1 eigenspace of A. Call this space E1. We also have A(v − Av) = 0, so v − Av
belongs to the λ = 0 eigenspace (that is, the nullspace) of A. Call this space E0. Since
v = Av + (v−Av), we see that E0 + E1 = Rn. This shows that eigenvectors of A span Rn,
and hence there is a basis of Rn consisting of eigenvectors of A, so A is diagonalizable.

(b) By part (a), A is diagonalizable, similar to a diagonal matrix Λ with diagonal entries
0 or 1. Then tr(A) = tr(Λ) and rank(A) = rank(λ). But tr(Λ) = rank(λ), since either one
is the number of diagonal entries that are equal to 1.

5. The condition on A implies that

A


1
1
...
1

 =


c
c
...
c

 .

This shows that [1 1 · · · 1]T is an eigenvector with eigenvalue c.
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If, instead, every column of A sums to c, then AT has c as an eigenvalue by the preceding
reasoning. But det(λI − A) = det(λI − AT ), so A has the same eigenvalues as AT . In this
case, however, we are not given enough information to find a specific eigenvector associated
with c.

6. x(t) = 2t3/2 − t.

7.

x(t) =

{
−1

3
+ 1

3
e3(t−1), for 1 ≤ t < 2,

−1
3
t + 2

9
+ (1

3
e3 + 1

9
)e3(t−2), for t ≥ 2.

8. x(t) = (t− 1)e4t + e−2t.

9. x(t) = e−π/2et cos 2t− e−π/2et sin 2t.

10. x(t) = (1
3
t4 + 2t + 1)e−2t.

11.

x(t) =

 e2t

−2e−t + e2t

e−t − e2t

 .

12.

x(t) =

[
et + 3 cos t + sin t
−3et − cos t− 2 sin t

]
13.

x(t) = C1

[
e2t

−e2t

]
+ C2

[
te2t

e2t + te2t

]
.

14. It’s clear that x1(t) = t3 is continuous and differentiable for all t, and you can check
directly that it’s a solution of the IVP. As for x2(t) = |t3|, it is also clearly continuous, and
its derivative is 3t2 for t > 0 and −3t2 for t < 0. At t = 0, its derivatives from the left and
right are both equal to 0, so x2(t) is differentiable for all t, with derivative 3t2 for t ≥ 0 and
−3t2 for t ≤ 0. Now you can again check directly that it’s a solution of the IVP, by checking
the cases t ≥ 0 and t ≤ 0 separately.

This does not contradict the existence and uniqueness theorem because in standard form,
the differential equation becomes

x′(t)− 3t−1x(t) = 0.

Since the coefficient −3t−1 is not defined at t = 0, the existence and uniqueness theorem
only applies on the intervals (0,∞) and (−∞, 0) separately. The equation can (and does)
have a non-unique solution on the whole real line.

15. Just check that they are solutions. For independence, compute the Wronskian

W = det

t t2 t3

1 2t 3t2

0 2 6t

 = 2t3,
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which is non-zero for t ∈ (0,∞).

16. x(t) = C1 + C2t + C3e
t sin t + C4e

t cos t + C5e
−t sin t + C6e

−t cos t.
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