Math H54 Honors Linear Algebra and Differential Equations Spring, 2004
Prof. Haiman

Solutions to final exam review problems

1. The 6 matrices below form a basis:
1 00 000 000
Ai=10 0 0f, Ay=10 1 0, A3=10 0 O
00O 0 00 0 0 1
010 0 01 000
Ay;= |1 0 0f, As;=1|0 0 0, Ag=10 0 1
000 1 00 010

To prove that they form a basis it is enough to observe that every symmetric matrix is a
linear combination of the above with unique coefficients:

a d e
d b f :aA1+bA2+CA3+dA4+6A5+fA6.
e f ¢

2. We can take V' = NS(A), W = NS(B) for some 2x 7 matrices A, B. Then VNW = NS(X),

where y
X [ B} |

Since X is a 4 X 7 matrix, we have rank(X) < 4, and hence dim(VNW) = 7 —rank(X) > 3.
3. Any vector x € NS(A) NRS(A) satisfies x”x = ||x|| = 0, hence x = 0.

4. (a) For every vector v € R", we have A(Av) = Av, which shows that Av belongs to
the A = 1 eigenspace of A. Call this space F;. We also have A(v — Av) = 0, so v — Av
belongs to the A = 0 eigenspace (that is, the nullspace) of A. Call this space Ej,. Since
v = Av + (v — Av), we see that Fy + E; = R™. This shows that eigenvectors of A span R,
and hence there is a basis of R" consisting of eigenvectors of A, so A is diagonalizable.

(b) By part (a), A is diagonalizable, similar to a diagonal matrix A with diagonal entries
0 or 1. Then tr(A) = tr(A) and rank(A) = rank(\). But tr(A) = rank(\), since either one
is the number of diagonal entries that are equal to 1.

5. The condition on A implies that

1
1 c
Al | =
1 c
This shows that [1 1 --- 1] is an eigenvector with eigenvalue c.
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If, instead, every column of A sums to ¢, then A” has c as an eigenvalue by the preceding
reasoning. But det(A — A) = det(A] — AT), so A has the same eigenvalues as AT. In this
case, however, we are not given enough information to find a specific eigenvector associated
with c.

6. w(t) =232 —t.

7.

—1 4+ 137D for 1 <t <2

x(t) = ? i 326 1 73 1Y,3(t—2) fOf >_ 7

—3t+ 5+ (37 +5)e , fort>2.
8. z(t) = (t —1)e + e 2.
9. x(t) = e7™/2e! cos 2t — e~™/?et sin 2t.
10. z(t) = (5t + 2t + 1)e™ .
11.

o2t
x(t) = | —2e 7t 4+ e
ot _ o2t
12.
x(t) = e' +3cost +sint
| —3e! —cost — 2sint

13.

€2t te?t
x(t) = {—e%} + Oy th +te2t} .

14. Tt’s clear that xy(t) = t* is continuous and differentiable for all ¢, and you can check
directly that it’s a solution of the IVP. As for z5(t) = |t3], it is also clearly continuous, and
its derivative is 3t? for t > 0 and —3t? for t < 0. At ¢t = 0, its derivatives from the left and
right are both equal to 0, so z(t) is differentiable for all ¢, with derivative 3t* for + > 0 and
—3t2 for t < 0. Now you can again check directly that it’s a solution of the IVP, by checking
the cases t > 0 and t < 0 separately.

This does not contradict the existence and uniqueness theorem because in standard form,
the differential equation becomes

7' (t) — 3t () = 0.

Since the coefficient —3t~! is not defined at ¢+ = 0, the existence and uniqueness theorem
only applies on the intervals (0,00) and (—oo,0) separately. The equation can (and does)
have a non-unique solution on the whole real line.

15. Just check that they are solutions. For independence, compute the Wronskian

t 2
W =det |1 2t 3t2| =2t3,
0 2 6t



which is non-zero for ¢ € (0, 00).

16. z(t) = Cy + Cyt + Cze’ sint + Cye’ cost + Cse ' sint + Cge* cost.



