Homework 7

due Friday, March 19

Reading for Lectures 14–16:

• Sections 4.1, 5.2–5.3

Problems:

• 5.2 Ex. 8,9,10. Use the results of these exercises to find a formula for the characteristic polynomial of A_n . Then compute the determinant of the $n \times n$ matrix

2	1	 1	
1	2	 1	
÷	÷	:	•
1	1	 2	

- 5.2 Ex. 20, 33
- 5.3 Ex. 9, 26, 32
- Problem A. The *kernel* of a linear transformation $\phi: V \to W$ is defined to be the subset $\{\mathbf{v} \in V : \phi(\mathbf{v}) = \mathbf{0}\}$. The *image* of ϕ is defined to be the subset $\{\phi(\mathbf{v}) : \mathbf{v} \in V\} \subseteq W$. We use the notation ker (ϕ) for the kernel and im (ϕ) for the image.
 - (a) Verify that $\ker(\phi)$ is a subspace of V and $\operatorname{im}(\phi)$ is a subspace of W.

(b) Assume V and W are finite-dimensional, and let A be the matrix of ϕ with respect to ordered bases \mathcal{B} of V and \mathcal{C} of W. Show that a vector \mathbf{v} belongs to ker(ϕ) if and only if its coordinate vector $[\mathbf{v}]_{\mathcal{B}}$ belongs to the nullspace NS(A).

(c) With A as in part (b), show that a vector \mathbf{w} belongs to $\operatorname{im}(\phi)$ if and only if its coordinate vector $[\mathbf{w}]_{\mathcal{C}}$ belongs to the column space $\operatorname{CS}(A)$.

(d) Using parts (b) and (c), show that $\dim(\operatorname{im}(\phi)) + \dim(\ker(\phi)) = \dim(V)$.

(e) Let $P_{<n}$ be the space of polynomials f(x) of degree < n, and define $T: P_{<n} \to P_{<n}$ by $T(f) = f + \frac{df}{dx}$. Verify that T is a linear transformation and show that ker $(T) = \{0\}$. [Hint: verify that the nonzero solutions of the differential equation $\frac{df}{dx} + f = 0$ are not polynomials.]

(f) Using parts (d) and (e), show that every polynomial g(x) can be expressed in the form g(x) = f(x) + f'(x) for some polynomial f(x).

- Problem B. Define $\Delta : P_{<n} \to P_{<n}$ by $\Delta f(x) = f(x+1) f(x)$. (This Δ is known as the forward difference operator.)
 - (a) Verify that Δ is a linear transformation.

(b) Describe the matrix A of Δ with respect to the basis of $P_{<n}$ consisting of the polynomials $C_0, C_1, \ldots, C_{n-1}$, where $C_0(x) = 1$ and for k > 0,

$$C_k(x) = \frac{x(x-1)\cdots(x-k+1)}{k!}.$$

(c) For n = 3, find the matrix B of Δ with respect to the basis $\{1, x, x^2\}$ of $P_{<3}$. Then find the change of basis matrix X from the basis $\{C_0, C_1, C_2\}$ to the basis $\{1, x, x^2\}$, and verify by direct computation that $B = XAX^{-1}$.