Reading for Lectures 26–28:

- Boyce & DiPrima 7.1, 7.4–7.9
- You might also want to read sections 7.2, 7.3 for a capsule review of matrices, eigenvectors and eigenvalues.

Problems:

- 7.1 Ex. 5; write the system in matrix notation.
- 7.4 Ex. 4, 6
- 7.5 Ex. 6, 29
- 7.6 Ex. 2
- 7.7 Ex. 5
- 7.8 Ex. 1
- 7.9 Ex. 4, 8
- Problem A. Suppose \(x^{(1)}, \ldots, x^{(n)} \) and \(y^{(1)}, \ldots, y^{(n)} \) are two fundamental sets of solutions of the homogeneous first order system of \(n \) equations

\[
 x'(t) = A(t)x(t).
\]

Since they are bases of the same space, there is a change of basis matrix \(B \) such that \([x^{(1)}, \ldots, x^{(n)}] B = [y^{(1)}, \ldots, y^{(n)}]\). Express the relationship between the Wronskians of the fundamental systems \(x \) and \(y \) in terms of \(B \). (This solves 7.3, Ex. 3, without using the differential equation satisfied by the Wronskian.)