Both versions had the same cipher with different messages.

Consider the cipher in which the letters A through Z are represented by congruence classes 0 through 25 \pmod{26}, and encrypted using the function that sends p to
\[f(p) = 17p + 10 \pmod{26} \]
Find the decryption function $g(p)$, and decrypt this message:

CAKZ or

ZAC!

Hint: $17 \cdot (-3) = -52 + 1$.

We need to solve
\[q \equiv 17p + 10 \pmod{26} \]
for p in terms of q. The hint shows that $17(-3) \equiv 1 \pmod{26}$. So subtract 10 and multiply by -3 to get
\[p \equiv -3(q - 10) \equiv 4 - 3q \pmod{26}, \]
that is,
\[g(p) = 4 - 3p \pmod{26}. \]

The letters in the messages are $A = 0$, $C = 2$, $K = 10$, $Z = 25 \equiv -1$. Applying the decryption function g, we get $A \rightarrow 4 = E$, $C \rightarrow -2 \equiv 24 = Y$, $K \rightarrow 0 = A$, $Z \rightarrow 7 = H$. So

CAKZ \rightarrow YEAH,

ZAC! \rightarrow HEY!