2: If \(n \) is odd then \(n \equiv 1, 3, 5 \text{ or } 7 \pmod{8} \). In each case we have \(n^2 \equiv 1 \pmod{8} \). An alternative proof is to write \(n = 2k + 1 \), so \(n^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1 \). The number \(k(k + 1) \) is even, no matter whether \(k \) is even or odd, so 8 divides \(4k(k + 1) \), and hence \(n^2 \equiv 1 \pmod{8} \).

10: Following the hint, let
\[
x = m^2 - n^2, \quad y = 2mn, \quad z = m^2 + n^2.
\]
Then calculate
\[
x^2 + y^2 = m^4 - 2m^2n^2 + n^4 + 4m^2n^2
= m^4 + 2m^2n^2 + n^4
= (m^2 + n^2)^2
= z^2.
\]
There are infinitely many choices for \(m \) and \(n \), giving infinitely many integer solutions of \(x^2 + y^2 = z^2 \).

10 Extra: Trying small values in the recipe for solutions above, we soon find that \(m = 1, n = 4 \) gives \((8 : 15 : 17)\). The problem doesn’t ask for a proof that this is the smallest possibility, but you could prove it by checking all possibilities with hypotenuse length less than 17.

25 Extra: Given consecutive odd integers \(p, p + 2, p + 4 \), observe that if \(p \equiv 0 \pmod{3} \) then \(3 \mid p \), if \(p \equiv 1 \pmod{3} \) then \(3 \mid p + 2 \), and if \(p \equiv 2 \pmod{3} \), then \(3 \mid p + 4 \). In every case, one of the three numbers is divisible by 3, so they can’t all be prime unless \(p = 3 \).

30: We might suppose that \(p_1, \ldots, p_t \) is a list of all the primes \(\equiv 1 \pmod{4} \), and construct \(Q = 4p_1 \cdots p_t + 1 \), so \(Q \equiv 1 \pmod{4} \) and no \(p_i \) divides \(Q \). Then letting \(Q = q_1 \cdots q_t \) be the prime factorization, we might hope to show that some \(q_i \equiv 1 \pmod{4} \), yielding a contradiction. But this last conclusion doesn’t follow, since if \(t \) is even and every \(q_i \equiv 3 \pmod{4} \), we would still have \(Q \equiv 1 \pmod{4} \).