Homework 5 Solutions

1. (a) Depending on your choice of starting values, you might find any one of the factors 13, 17 or 23. In theory you might find a factor that is a product of two of these but that is somewhat unlikely. (b) You should find yourself with one prime and one composite factor, and after further factoring, get $5083 = 13 \cdot 17 \cdot 23$.

2. Let r be a prime factor of n, and let $p = r^k$ be its highest power that divides n. Then $q = n/p$ does not have r as a prime factor, so p and q are relatively prime. If n is not prime or a power of a prime, then $q \neq 1$, so $n = pq$ is a proper factorization into relatively prime factors.

3. (a) Suppose n has d binary digits, and let $r = \lceil d/k \rceil$. Then $n < 2^d$, so $\sqrt[n]{n} < 2^r$. To do a binary search for $\sqrt[n]{n}$, set an initial upper limit $y = 2^r$ and lower limit $x = 1$. Repeat the following steps: compute $z = \lceil (x + y)/2 \rceil$ and compare z^k with n. If $z^k = n$, we have found the k-th root. If $z^k < n$, set a new lower limit $x = z + 1$. If $z^k > n$, set a new upper limit $y = z - 1$. If this gives new upper and lower limits with $x > y$, then $\sqrt[n]{n}$ is not an integer.

The test number z is always less than 2^r, so z^k is less than 2^{kr}, which has approximately as many binary digits as n. The search range is cut in half at each step, so the algorithm takes at most $r = d/k$ steps, which is $O(\log n)$.

(b) Again let d be the number of binary digits of n. Then $n < 2^d$, so $\sqrt[n]{n} < 2^r$. Hence $\sqrt[n]{n}$ cannot be an integer for $k > d$, so we only need to try $k = 2, 3, \ldots, d - 1$. If you want to be more clever, it is enough to try only prime values of k, since if n is a k-th power, and p is a prime factor of k, then n is also a p-th power.

Overall the algorithm runs $O(\log n)$ steps for each k, and we need only try $O(\log n)$ different k values, for a total of $O((\log n)^2)$ steps. (That's assuming the cost of computing z^k in each step is constant, which isn't necessarily a realistic assumption.)

2.7 #14: In the formula $\sum_j a_{ij}b_{jk}$ for the (i, k) entry of the product AB, each term $a_{ij}b_{jk}$ is zero unless $i = j = k$, since A and B are diagonal. Therefore the whole sum is zero if $i \neq k$, which shows that AB is diagonal, and the (i, i) diagonal entry of AB is just $a_{ii}b_{ii}$.

2.7 #24 (a) Computing $(A_1A_2)A_3$ takes 18000 multiplication operations. Computing $A_1(A_2A_3)$ takes 60000 operations. The first way is more efficient.