#11: The solution in your book contains an error. The results of the recursive calls should be multiplied by 2, not by \(2x\).

#28: The recurrence for \(P_{m,n}\) is slightly simpler if you include cases where \(m\) or \(n\) is zero, with the understanding that there is one partition of zero, namely the empty partition. Here’s a recursive algorithm based on that modification.

```plaintext
procedure partitions(m)
    return partitions1(m, m)

procedure partitions1(m, n)
    if m = 0 return 1
    else if n = 0 return 0
    else if n > m return partitions(m)
    else return partitions1(m − n, n) + partitions1(m, n − 1)
```

This algorithm is not efficient. An iterative algorithm would be much faster, using the recursive definition of \(P_{m,n}\) to compute a table of \(P_{j,k}\) for all \(0 \leq k \leq j \leq m, k \leq n\).

#38: Here are the partially sorted sublists at each level of recurrence:

```
357819246
12 3 578946
1 2 3 4 5 7896
1 2 3 4 5 6 7 89
1 2 3 4 5 6 7 8 9
```

#43: The worst case occurs when the list is already in order! Since it is \(O(n^2)\), quicksort is not an efficient algorithm in the worst case. However, it can be shown to have average case running time \(O(n \log n)\) on random input. The algorithm itself can also be randomized by choosing a random \(a_i\) as the threshold to split the list into sublists, instead of \(a_1\). The randomized version almost always runs in time \(O(n \log n)\) on any input. One reason quicksort is popular is that it can be implemented to sort a list in place, without using extra memory.

Extra problem: If \(n = 1\), there is nothing to do.

If \(n > 1\), divide your coins into two equal piles \(A\) and \(B\) of size \(\lceil n/3 \rceil\) and a third pile \(C\) of size \(n - 2\lceil n/3 \rceil\). Weigh \(A\) against \(B\). If they balance, the bad coin is in pile \(C\). If they don’t, the bad coin is in the lighter of piles \(A\) and \(B\). In every case, proceed recursively with the pile that contains the bad coin.

Now we prove that the number of weighings required is at most \(\lceil \log_3 n \rceil\). Equivalently, we are to show that that if \(n \leq 3^N\), then we use at most \(N\) weighings. If \(n = 1\), we use \(N = 0\) weighings, so this case is correct. If \(n > 1\), we use \(1 + M\) weighings, where \(M\) is the number of weighings for the recursive call. In every case, the number of coins for the recursive call is \(m \leq \lceil n/3 \rceil\), since \(n - 2\lceil n/3 \rceil \leq n - 2(n/3) = n/3 \leq \lceil n/3 \rceil\). Note that \(\lceil 3^N/3 \rceil = 3^{N-1}\), and \(\lceil n/3 \rceil\) is an increasing function of \(n\), so if \(n \leq 3^N\), then
\[\left\lceil \frac{n}{3} \right\rceil \leq 3^{N-1}. \] It follows by induction that the recursive call takes at most \(M = N - 1 \) weighings, and the original problem therefore takes at most \(N \) weighings.

Finally, we prove that it is impossible to do better than this in general. There are \(n \) possibilities for which coin is counterfeit. Each weighing has one of three outcomes (pile 1 heavy, pile 2 heavy, or balance). A sequence of \(N \) weighings has \(3^N \) possible outcomes. Therefore any algorithm that can identify the counterfeit coin using at most \(N \) weighings must have \(3^N \geq n \), or equivalently \(N \geq \lceil \log_3 n \rceil \).